scholarly journals The Role of Topography on the Shape of Unit Hydrographs in Small and Medium Sized Watersheds through a Physical Model

Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2270
Author(s):  
Alicia A. Del Rio ◽  
Aldo I. Ramirez ◽  
Mauricio A. Sanchez

This study intends to establish the main relations between topographic characteristics of the watershed and the main parameters of the unit hydrograph measured at the outlet. It looks to remove the subjectivity found in traditional synthetic methods and the trial and error setting of the main parameters of the hydrograph. The work was developed through physical experimentation of the rainfall-runoff process using the observed information of different watersheds of Chiapas, Mexico, as the reference. The experiments were carried out on a state-of-the-art semi-automatic runoff simulator, which was designed and built specifically for this study. Polynomial regression and fuzzy logic models were obtained to confirm the hypothesis of hydrological parameters being obtained from topographic data only by assuming uniform precipitation. Empirical relations were found for the peak flow, time to peak, base time and volume of the unit hydrograph and the watershed area, the main stream average slope, and the length of the stream of highest order. The main finding is that a unit hydrograph can be described based only on the watershed area when fuzzy logic models are applied.

1971 ◽  
Vol 2 (1) ◽  
pp. 23-46 ◽  
Author(s):  
EDMUND F. SCHULZ ◽  
SUBIN PINKAYAN ◽  
CHUMPORN KOMSARTRA

The characteristics of dimensionless unit hydrographs were derived from floods from watersheds smaller than 1000 square kilometers located in Thailand. The dimensionless unit hydrographs were expressed as ratios of q/qq as a function of t/tp. These dimensionless unit hydrographs were compared with similar unit hydrographs derived from floods on Taiwan and with the unit hydrographs derived from a mathematical model developed from the two parameter gamma function developed from the theory of the instantaneous unit hydrograph. It was found that the unit hydrographs derived from the Thai watersheds had much longer base length and much longer time to peak than similar unit hydrographs derived from floods on Taiwan. This increase in length of response time is attributed to a larger component of subsurface runoff believed to be present in the floods from tropical watersheds.


2005 ◽  
Vol 2 (5) ◽  
pp. 2111-2151
Author(s):  
J. Y. Ding

Abstract. This paper reviews the use of an input-dependent kernel in a linear convolution integral as a quasi-nonlinear approach to unify nonlinear overland flow, channel routing and catchment runoff processes. The conceptual model of a variable kernel or instantaneous unit hydrograph (IUH) is characterized by a nonlinear storage-discharge relation, q=cNsN where the storage exponent N is an index or degree of watershed nonlinearity. When the causative rainfall excess intensity of a unit hydrograph is known, parameters N and c can be determined directly from its shape factor, the product of the unit peak ordinate and the time to peak. The model is calibrated by the shape factor and verified by convolution integral on two watersheds of vastly different sizes, each having a family of four or five unit hydrographs, data of which were published by Childs in 1958 for the Naugatuck River and by Minshall in 1960 for the Edwardsville catchment. For an 11-hectare catchment near Edwardsville in southern Illinois, the US, four moderate storms show an average N value of 1.79, which is 7% higher than the theoretical value of 1.67 by Manning friction law, while the heaviest storm, which is three to six times larger than the next two events in terms of the peak discharge and runoff volume, follows the Chezy law of 1.5. At the other end of scale, for the Naugatuck River at Thomaston in Connecticut, the US, having a drainage area of 186.2 km2, the average N value of 2.28 varies from 1.92 for a minor flood to 2.68 for a hurricane-induced flood, all of which lie between the theoretical value of 1.67 for turbulent overland flow and that of 3.0 for laminar overland flow. Short examples and a spreadsheet template are given to illustrate key steps in generating the direct runoff hydrograph by convolution integral with the 2-parameter variable IUH model.


Informatica ◽  
2018 ◽  
Vol 29 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Javier Albadán ◽  
Paulo Gaona ◽  
Carlos Montenegro ◽  
Rubén González-Crespo ◽  
Enrique Herrera-Viedma

1985 ◽  
Vol 16 (1) ◽  
pp. 1-10 ◽  
Author(s):  
V. P. Singh ◽  
C. Corradini ◽  
F. Melone

The geomorphological instantaneous unit hydrograph (IUH) proposed by Gupta et al. (1980) was compared with the IUH derived by commonly used time-area and Nash methods. This comparison was performed by analyzing the effective rainfall-direct runoff relationship for four large basins in Central Italy ranging in area from 934 to 4,147 km2. The Nash method was found to be the most accurate of the three methods. The geomorphological method, with only one parameter estimated in advance from the observed data, was found to be little less accurate than the Nash method which has two parameters determined from observations. Furthermore, if the geomorphological and Nash methods employed the same information represented by basin lag, then they produced similar accuracy provided the other Nash parameter, expressed by the product of peak flow and time to peak, was empirically assessed within a wide range of values. It was concluded that it was more appropriate to use the geomorphological method for ungaged basins and the Nash method for gaged basins.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1456
Author(s):  
Kee-Won Seong ◽  
Jang Hyun Sung

An oscillatory S-curve causes unexpected fluctuations in a unit hydrograph (UH) of desired duration or an instantaneous UH (IUH) that may affect the constraints for hydrologic stability. On the other hand, the Savitzky–Golay smoothing and differentiation filter (SG filter) is a digital filter known to smooth data without distorting the signal tendency. The present study proposes a method based on the SG filter to cope with oscillatory S-curves. Compared to previous conventional methods, the application of the SG filter to an S-curve was shown to drastically reduce the oscillation problems on the UH and IUH. In this method, the SG filter parameters are selected to give the minimum influence on smoothing and differentiation. Based on runoff reproduction results and performance criteria, it appears that the SG filter performed both smoothing and differentiation without the remarkable variation of hydrograph properties such as peak or time-to peak. The IUH, UH, and S-curve were estimated using storm data from two watersheds. The reproduced runoffs showed high levels of model performance criteria. In addition, the analyses of two other watersheds revealed that small watershed areas may experience scale problems. The proposed method is believed to be valuable when error-prone data are involved in analyzing the linear rainfall–runoff relationship.


Sign in / Sign up

Export Citation Format

Share Document