scholarly journals Molecular Dynamics Simulation of the Interaction between Common Metal Ions and Humic Acids

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3200
Author(s):  
Xu Wu ◽  
Yu Xia ◽  
Lianhua Yuan ◽  
Kaiyu Xia ◽  
Yu Jiang ◽  
...  

Humic acids (HAs) have important environmental and geochemical effects on soil, water environments and sediment. HAs strongly complex some metal ions, which affects the migration of metal ions and the colloidal aggregation of HA. Here, the complexation of Ca2+ and Mg2+ with HA in aqueous solution under neutral conditions has been systematically studied by molecular dynamics (MD) simulation. The results show that the aggregation of HA is caused by the complexation of HA and metal ions, mainly due to the intermolecular bridging between Ca2+, Mg2+ and COO− groups. Monodentate and bidentate coordinations have been found between Ca2+ and COO− groups of different HA molecules in the same simulation system. Mg2+ only has a monodentate coordination with COO− group.

CrystEngComm ◽  
2019 ◽  
Vol 21 (48) ◽  
pp. 7507-7518 ◽  
Author(s):  
Soroush Ahmadi ◽  
Yuanyi Wu ◽  
Sohrab Rohani

Molecular dynamics (MD) simulation is used to investigate the mechanism of crystal nucleation of potassium chloride (KCl) in a supersaturated aqueous solution at 293 K and 1 atm.


2020 ◽  
Vol 18 (1) ◽  
pp. 69-76
Author(s):  
Qiang Wang ◽  
Qizhong Tang ◽  
Sen Tian

AbstractMolecular dynamics (MD) analysis of methane hydrate is important for the application of methane hydrate technology. This study investigated the microstructure changes of sI methane hydrate and the laws of stress–strain evolution under the condition of compression and tension by using MD simulation. This study further explored the mechanical property and stability of sI methane hydrate under different stress states. Results showed that tensile and compressive failures produced an obvious size effect under a certain condition. At low temperature and high pressure, most of the clathrate hydrate maintained a stable structure in the tensile fracture process, during which only a small amount of unstable methane broke the structure, thereby, presenting a free-motion state. The methane hydrate cracked when the system reached the maximum stress in the loading process, in which the maximum compressive stress is larger than the tensile stress under the same experimental condition. This study provides a basis for understanding the microscopic stress characteristics of methane hydrate.


Author(s):  
Rapeepan Promyoo ◽  
Hazim El-Mounayri ◽  
Kody Varahramyan ◽  
Ashlie Martini

Recently, atomic force microscopy (AFM) has been widely used for nanomachining and fabrication of micro/ nanodevices. This paper describes the development and validation of computational models for AFM-based nanomachining (nanoindentation and nanoscratching). The Molecular Dynamics (MD) technique is used to model and simulate mechanical indentation and scratching at the nanoscale in the case of gold and silicon. The simulation allows for the prediction of indentation forces and the friction force at the interface between an indenter and a substrate. The effects of tip curvature and speed on indentation force and friction coefficient are investigated. The material deformation and indentation geometry are extracted based on the final locations of atoms, which are displaced by the rigid tool. In addition to modeling, an AFM was used to conduct actual indentation at the nanoscale, and provide measurements to validate the predictions from the MD simulation. The AFM provides resolution on nanometer (lateral) and angstrom (vertical) scales. A three-sided pyramid indenter (with a radius of curvature ∼ 50 nm) is raster scanned on top of the surface and in contact with it. It can be observed from the MD simulation results that the indentation force increases as the depth of indentation increases, but decreases as the scratching speed increases. On the other hand, the friction coefficient is found to be independent of scratching speed.


2009 ◽  
Vol 62 (9) ◽  
pp. 1054 ◽  
Author(s):  
Defang Ouyang ◽  
Hong Zhang ◽  
Dirk-Peter Herten ◽  
Harendra S. Parekh ◽  
Sean C. Smith

We use molecular dynamics simulations to compare the conformational structure and dynamics of a 21-base pair RNA sequence initially constructed according to the canonical A-RNA and A′-RNA forms in the presence of counterions and explicit water. Our study aims to add a dynamical perspective to the solid-state structural information that has been derived from X-ray data for these two characteristic forms of RNA. Analysis of the three main structural descriptors commonly used to differentiate between the two forms of RNA – namely major groove width, inclination and the number of base pairs in a helical twist – over a 30 ns simulation period reveals a flexible structure in aqueous solution with fluctuations in the values of these structural parameters encompassing the range between the two crystal forms and more. This provides evidence to suggest that the identification of distinct A-RNA and A′-RNA structures, while relevant in the crystalline form, may not be generally relevant in the context of RNA in the aqueous phase. The apparent structural flexibility observed in our simulations is likely to bear ramifications for the interactions of RNA with biological molecules (e.g. proteins) and non-biological molecules (e.g. non-viral gene delivery vectors).


Sign in / Sign up

Export Citation Format

Share Document