scholarly journals A Model of Ice Wedge Polygon Drainage in Changing Arctic Terrain

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3376
Author(s):  
Vitaly A. Zlotnik ◽  
Dylan R. Harp ◽  
Elchin E. Jafarov ◽  
Charles J. Abolt

As ice wedge degradation and the inundation of polygonal troughs become increasingly common processes across the Arctic, lateral export of water from polygonal soils may represent an important mechanism for the mobilization of dissolved organic carbon and other solutes. However, drainage from ice wedge polygons is poorly understood. We constructed a model which uses cross-sectional flow nets to define flow paths of meltwater through the active layer of an inundated low-centered polygon towards the trough. The model includes the effects of evaporation and simulates the depletion of ponded water in the polygon center during the thaw season. In most simulations, we discovered a strong hydrodynamic edge effect: only a small fraction of the polygon volume near the rim area is flushed by the drainage at relatively high velocities, suggesting that nearly all advective transport of solutes, heat, and soil particles is confined to this zone. Estimates of characteristic drainage times from the polygon center are consistent with published field observations.

2015 ◽  
Vol 12 (23) ◽  
pp. 6915-6930 ◽  
Author(s):  
J. E. Vonk ◽  
S. E. Tank ◽  
P. J. Mann ◽  
R. G. M. Spencer ◽  
C. C. Treat ◽  
...  

Abstract. As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January–December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later in the summer, as well as decreasing hydrologic connectivity between soils and surface water as the thaw season progresses. Our results suggest that future climate warming-induced shifts of continuous permafrost into discontinuous permafrost regions could affect the degradation potential of thaw-released DOC, the amount of BDOC, as well as its variability throughout the Arctic summer. We lastly recommend a standardized BDOC protocol to facilitate the comparison of future work and improve our knowledge of processing and transport of DOC in a changing Arctic.


2015 ◽  
Vol 12 (11) ◽  
pp. 3551-3565 ◽  
Author(s):  
D. Doxaran ◽  
E. Devred ◽  
M. Babin

Abstract. Global warming has a significant impact on the regional scale on the Arctic Ocean and surrounding coastal zones (i.e., Alaska, Canada, Greenland, Norway and Russia). The recent increase in air temperature has resulted in increased precipitation along the drainage basins of Arctic rivers. It has also directly impacted land and seawater temperatures with the consequence of melting permafrost and sea ice. An increase in freshwater discharge by main Arctic rivers has been clearly identified in time series of field observations. The freshwater discharge of the Mackenzie River has increased by 25% since 2003. This may have increased the mobilization and transport of various dissolved and particulate substances, including organic carbon, as well as their export to the ocean. The release from land to the ocean of such organic material, which has been sequestered in a frozen state since the Last Glacial Maximum, may significantly impact the Arctic Ocean carbon cycle as well as marine ecosystems. In this study we use 11 years of ocean color satellite data and field observations collected in 2009 to estimate the mass of terrestrial suspended solids and particulate organic carbon delivered by the Mackenzie River into the Beaufort Sea (Arctic Ocean). Our results show that during the summer period, the concentration of suspended solids at the river mouth, in the delta zone and in the river plume has increased by 46, 71 and 33%, respectively, since 2003. Combined with the variations observed in the freshwater discharge, this corresponds to a more than 50% increase in the particulate (terrestrial suspended particles and organic carbon) export from the Mackenzie River into the Beaufort Sea.


2013 ◽  
Vol 10 (6) ◽  
pp. 3507-3524 ◽  
Author(s):  
S. Zubrzycki ◽  
L. Kutzbach ◽  
G. Grosse ◽  
A. Desyatkin ◽  
E.-M. Pfeiffer

Abstract. The Lena River Delta, which is the largest delta in the Arctic, extends over an area of 32 000 km2 and likely holds more than half of the entire soil organic carbon (SOC) mass stored in the seven major deltas in the northern permafrost regions. The geomorphic units of the Lena River Delta which were formed by true deltaic sedimentation processes are a Holocene river terrace and the active floodplains. Their mean SOC stocks for the upper 1 m of soils were estimated at 29 kg m−2 ± 10 kg m−2 and at 14 kg m−2 ± 7 kg m−2, respectively. For the depth of 1 m, the total SOC pool of the Holocene river terrace was estimated at 121 Tg ± 43 Tg, and the SOC pool of the active floodplains was estimated at 120 Tg ± 66 Tg. The mass of SOC stored within the observed seasonally thawed active layer was estimated at about 127 Tg assuming an average maximum active layer depth of 50 cm. The SOC mass which is stored in the perennially frozen ground at the increment 50–100 cm soil depth, which is currently excluded from intense biogeochemical exchange with the atmosphere, was estimated at 113 Tg. The mean nitrogen (N) stocks for the upper 1 m of soils were estimated at 1.2 kg m−2 ± 0.4 kg m−2 for the Holocene river terrace and at 0.9 kg m−2 ± 0.4 kg m−2 for the active floodplain levels, respectively. For the depth of 1 m, the total N pool of the river terrace was estimated at 4.8 Tg ± 1.5 Tg, and the total N pool of the floodplains was estimated at 7.7 Tg ± 3.6 Tg. Considering the projections for deepening of the seasonally thawed active layer up to 120 cm in the Lena River Delta region within the 21st century, these large carbon and nitrogen stocks could become increasingly available for decomposition and mineralization processes.


2012 ◽  
Vol 9 (1) ◽  
pp. 209-251 ◽  
Author(s):  
M. I. Stutter ◽  
S. M. Dunn ◽  
D. G. Lumsdon

Abstract. Better knowledge of spatial and temporal delivery of dissolved organic Carbon (DOC) in small catchments is required to understand the mechanisms behind reported long-term changes in C fluxes from some peatlands. We monitored two storms with contrasting seasons and antecedent conditions in a small upland UK moorland catchment. We examined DOC concentrations and specific UV absorbance (SUVA at 285 nm), together with solute concentrations required to undertake end member mixing analyses to define dominant flow paths contributing to streamflow. This was combined with laboratory soil-solution equilibrations. We aimed to resolve how seasonal biogeochemical processing of DOC and flowpath changes in organo-mineral soils combine to affect DOC exported via the stream. An August storm following a dry period gave maximum DOC concentration of 10 mg l−1. Small DOC:DON ratios (16–28) and SUVA (2.7–3.6 l mg−1 m−1) was attributed to filtration of aromatic compounds associated with up to 53% B horizon flow contributions. This selective filtration of high SUVA DOC was reproduced in the experimental batch equilibration system. For a November storm, wetter antecedent soil conditions led to enhanced soil connectivity with the stream and seven times greater DOC stream-load (maximum concentration 16 mg l−1). This storm had a 63% O horizon flow contribution at its peak, limited B horizon buffering and consequently more aromatic DOC (SUVA 3.9–4.5 l mg−1 m−1 and DOC:DON ratio 35–43). We suggest that simple mixing of waters from different flow paths cannot alone explain the differences in DOC compositions between August and November and biogeochemical processing of DOC is required to fully explain the observed stream DOC dynamics. This is in contrast to other studies proposing hydrological controls and provides evidence that DOC biogeochemistry must be incorporated in modelling to predict the impacts of changes in DOC delivery to aquatic systems.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shinya Takano ◽  
Youhei Yamashita ◽  
Shunsuke Tei ◽  
Maochang Liang ◽  
Ryo Shingubara ◽  
...  

Arctic tundra wetlands may be an important source of dissolved organic carbon (DOC) in Arctic rivers and the Arctic Ocean under global warming. We investigated stable water isotopes and DOC concentration in wetlands, tributaries, and the mainstream at the lower reaches of the Indigirka River in northeastern Siberia during the summers of 2010–2014 to assess the complex hydrology and role of wetlands as sources of riverine DOC. The wetlands had higher values of δ18O and DOC concentration than the tributaries and mainstream of the Indigirka River. A relationship between the two parameters was observed in the wetlands, tributaries, and mainstream, suggesting the wetlands can be a source of DOC for the mainstream through the tributaries. The combined temporal variations in riverine δ18O and DOC concentration indicate the mainstream water flowed into the tributaries during relatively high river-level periods in summer, whereas high DOC water in the downstream wetlands could be discharged to the mainstream through the tributaries during the low river-level periods. A minor fraction (7–13%) of riverine and wetland DOC was degraded during 40 days of dark incubation. Overall, the downstream wetlands potentially provide relatively less biodegradable DOC to the Arctic river and costal ecosystem during the low river-level periods—from late summer to autumn.


2022 ◽  
Vol 9 ◽  
Author(s):  
Lydia Stolpmann ◽  
Gesine Mollenhauer ◽  
Anne Morgenstern ◽  
Jens S. Hammes ◽  
Julia Boike ◽  
...  

The Arctic is rich in aquatic systems and experiences rapid warming due to climate change. The accelerated warming causes permafrost thaw and the mobilization of organic carbon. When dissolved organic carbon is mobilized, this DOC can be transported to aquatic systems and degraded in the water bodies and further downstream. Here, we analyze the influence of different landscape components on DOC concentrations and export in a small (6.45 km2) stream catchment in the Lena River Delta. The catchment includes lakes and ponds, with the flow path from Pleistocene yedoma deposits across Holocene non-yedoma deposits to the river outlet. In addition to DOC concentrations, we use radiocarbon dating of DOC as well as stable oxygen and hydrogen isotopes (δ18O and δD) to assess the origin of DOC. We find significantly higher DOC concentrations in the Pleistocene yedoma area of the catchment compared to the Holocene non-yedoma area with medians of 5 and 4.5 mg L−1 (p < 0.05), respectively. When yedoma thaw streams with high DOC concentration reach a large yedoma thermokarst lake, we observe an abrupt decrease in DOC concentration, which we attribute to dilution and lake processes such as mineralization. The DOC ages in the large thermokarst lake (between 3,428 and 3,637 14C y BP) can be attributed to a mixing of mobilized old yedoma and Holocene carbon. Further downstream after the large thermokarst lake, we find progressively younger DOC ages in the stream water to its mouth, paired with decreasing DOC concentrations. This process could result from dilution with leaching water from Holocene deposits and/or emission of ancient yedoma carbon to the atmosphere. Our study shows that thermokarst lakes and ponds may act as DOC filters, predominantly by diluting incoming waters of higher DOC concentrations or by re-mineralizing DOC to CO2 and CH4. Nevertheless, our results also confirm that the small catchment still contributes DOC on the order of 1.2 kg km−2 per day from a permafrost landscape with ice-rich yedoma deposits to the Lena River.


2018 ◽  
Vol 4 (4) ◽  
pp. 750-780 ◽  
Author(s):  
Caroline Coch ◽  
Scott F. Lamoureux ◽  
Christian Knoblauch ◽  
Isabell Eischeid ◽  
Michael Fritz ◽  
...  

Coastal ecosystems in the Arctic are affected by climate change. As summer rainfall frequency and intensity are projected to increase in the future, more organic matter, nutrients and sediment could be mobilized and transported into the coastal nearshore zones. However, knowledge of current processes and future changes is limited. We investigated streamflow dynamics and the impacts of summer rainfall on lateral fluxes in a small coastal catchment on Herschel Island in the western Canadian Arctic. For the summer monitoring periods of 2014–2016, mean dissolved organic matter flux over 17 days amounted to 82.7 ± 30.7 kg km−2 and mean total dissolved solids flux to 5252 ± 1224 kg km−2. Flux of suspended sediment was 7245 kg km−2 in 2015, and 369 kg km−2 in 2016. We found that 2.0% of suspended sediment was composed of particulate organic carbon. Data and hysteresis analysis suggest a limited supply of sediments; their interannual variability is most likely caused by short-lived localized disturbances. In contrast, our results imply that dissolved organic carbon is widely available throughout the catchment and exhibits positive linear relationship with runoff. We hypothesize that increased projected rainfall in the future will result in a similar increase of dissolved organic carbon fluxes.


Sign in / Sign up

Export Citation Format

Share Document