scholarly journals Cryosphere Water Resources Simulation and Service Function Evaluation in the Shiyang River Basin of Northwest China

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 114
Author(s):  
Kailu Li ◽  
Rensheng Chen ◽  
Guohua Liu

Water is the most critical factor that restricts the economic and social development of arid regions. It is urgent to understand the impact on cryospheric changes of water resources in arid regions in western China under the background of global warming. A cryospheric basin hydrological model (CBHM) was used to simulate the runoff, especially for glaciers and snowmelt water supply, in the Shiyang River Basin (SRB). A cryosphere water resources service function model was proposed to evaluate the value of cryosphere water resources. The annual average temperature increased significantly (p > 0.05) from 1961 to 2016. The runoff of glacier and snowmelt water in the SRB decreased significantly. This reduction undoubtedly greatly weakens the runoff regulation function. The calculation and value evaluation of the amount of water resources in the cryosphere of Shiyang River Basin is helpful to the government for adjusting water structure to realize sustainable development.

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 577 ◽  
Author(s):  
Lizhen Wang ◽  
Yong Zhao ◽  
Yuefei Huang ◽  
Jianhua Wang ◽  
Haihong Li ◽  
...  

Water-rights trade has proved to be an effective method for coping with water shortages through the transfer of water resources between users. The water allocation system is classified into two categories based on information transparency and water rights transaction goals: administered system (AS) and market-based system (MS). A multi-agent and multi-objective optimal allocation model, built on a complex adaptive system, was introduced to direct the distribution of water resources under an AS in the Shiyang River Basin; it was compared with a market-based water rights transaction model using the bulletin-board approach. Ideal economic agent equations played a dominant role in both models. The government and different water users were conceptualized as agents with different behaviors and goals in water allocation. The impact of water-saving cost on optimal water allocation was also considered. The results showed that an agent’s water-saving behavior was incentivized by high transaction prices in the water market. Under the MS, the highest bid in the quotation set had a dominant influence on how trade was conducted. A higher transaction price will, thus, result in a better benefit ratio, and a lower one will result in inactivity in terms of water rights trade. This will significantly impact the economic benefit to the basin.


2017 ◽  
Vol 3 (3) ◽  
pp. 167
Author(s):  
Mario Puji Hersanto ◽  
Ashar Saputra ◽  
Suprapto Siswosukarto

This study aims to determine the effect of building design's inaccuracy against the cost of maintenance, by taking the research in Serayu Opak River Basin Organization, Water Resources Field and Water Resources Management Center in Yogyakarta Special Region. The first step is to analyze the inaccuracy of building design based on the result of interview and observation during field survey. The second step is to analyze the cost of building maintenance. The third step is to analyze the maintenance costs used to minimize the effects of the inaccurate design of the building. The result shows the inaccuracy of building design in the form of the use of clear glass without coated glass film and the absence of heat insulator on the roof of the building cause the room to become hot. The installation of rain gutters without vertical pipes, toilet facilities in the entire building is not yet complete, inadequate accessibility for persons with disabilities, and inadequate corridor design. There is a small portion of the maintenance budget used for reducing the impact of building design's inaccuracy, so it can be concluded that the design of the building is less meet the requirements of the Government regulations.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 793
Author(s):  
Abdul Razzaq Ghumman ◽  
Mohammed Jamaan ◽  
Afaq Ahmad ◽  
Md. Shafiquzzaman ◽  
Husnain Haider ◽  
...  

The evaporation losses are very high in warm-arid regions and their accurate evaluation is vital for the sustainable management of water resources. The assessment of such losses involves extremely difficult and original tasks because of the scarcity of data in countries with an arid climate. The main objective of this paper is to develop models for the simulation of pan-evaporation with the help of Penman and Hamon’s equations, Artificial Neural Networks (ANNs), and the Artificial Neuro Fuzzy Inference System (ANFIS). The results from five types of ANN models with different training functions were compared to find the best possible training function. The impact of using various input variables was investigated as an original contribution of this research. The average temperature and mean wind speed were found to be the most influential parameters. The estimation of parameters for Penman and Hamon’s equations was quite a daunting task. These parameters were estimated using a state of the art optimization algorithm, namely General Reduced Gradient Technique. The results of the Penman and Hamon’s equations, ANN, and ANFIS were compared. Thirty-eight years (from 1980 to 2018) of manually recorded pan-evaporation data regarding mean daily values of a month, including the relative humidity, wind speed, sunshine duration, and temperature, were collected from three gauging stations situated in Al Qassim, Saudi Arabia. The Nash and Sutcliffe Efficiency (NSE) and Mean Square Error (MSE) evaluated the performance of pan-evaporation modeling techniques. The study shows that the ANFIS simulation results were better than those of ANN and Penman and Hamon’s equations. The findings of the present research will help managers, engineers, and decision makers to sustainability manage natural water resources in warm-arid regions.


2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Bingyu Wang ◽  
Takashi Oguchi ◽  
Lin Zhang

<p><strong>Abstract.</strong> Inland river basins in arid to semi-arid regions are widely distributed in Northwest China, Central Asia, Central Australia, and North Africa, and are often subject to significant human activities. The most distinctive natural feature of such basins is the shortage of water resources, and the pivotal reasons involve less precipitation and heavy evapotranspiration (ET). In recent years, intensive human activities also damage the natural environment of the basins. They result in many problems especially the deterioration of ecological environment which will lead to severe consequences such as desertification, sandstorm, the disappearance of wetlands, reduction of forest and grassland degradation. They prevent us from achieving the goal of sustainable development. How to balance economic development and ecosystem conservation and to realize the sense of sustainability in inland river basins will be vitally important.</p><p>The Heihe River is the second largest inland river in the Northwest of China with a long history development by human (Figure 1). Water resources from the river are crucial not only for the ecosystem but also for local human societies. The Heihe River Basin (HRB) is divided into three zones with different landscapes and natural environments. The upstream of HRB is the headstream which generates water resources mainly from glaciers and snow in Qilian Mountain. A large population of nomadic national minorities inhabits here and keeps animal husbandry as the primary production activity. In the early times, the Chinese government encouraged production activities to stimulate economic growth, and significant over-grazing and resultant severe grassland degradation occurred. Grassland is crucial for maintaining water resources especially in arid regions, without grasses most water will quickly evaporate into the air. Therefore, land resource management about grassland and the impact of human activities on the natural environment are of high research value in the HRB.</p><p>This research aims to investigate the impact of over-grazing on grassland degradation in the inland ecosystem of the HRB. The changes of grassland distribution were simulated under different over-grazing scenarios to provide a reference for resource management and the related decision-making process and to contribute to the sustainable development of the region.</p>


2018 ◽  
Vol 9 (4) ◽  
pp. 166
Author(s):  
Don Charles

The year 2017 had a very active season for hurricanes and extreme weather conditions. Hurricanes Harvey, Irma, and Maria did damage to several Caribbean islands. Even Trinidad and Tobago (T&T), a country which rarely experiences extreme weather conditions, was affected by Tropical Storm Bret. Tropical Storm Bret caused flooding in T&T, especially in the low lying South Oropouche River Basin.There is a dearth of research conducted in T&T about the impact of extreme weather conditions and flooding on communities and families. Thus, this study sought to conduct a community base vulnerability assessment (CBVA) of the impact of the Tropical Storm Bret induced flooding upon the residents of the South Oropouche River Basin.Primary data was collected via semi-structured interviews and questionnaires to conduct the CBVA. Furthermore, this study introduced a Modal Community Based Vulnerability Assessment Index (MCBVAI) to help determine which factors the residents South Oropouche River Basin are most vulnerable to.This study found that the most vulnerable residents were vulnerable largely to their building of structures at locations unsuitable for housing. Moreover, the most vulnerable residents also built structures that were not resilient to flooding and was elevated less than 4 feet (ft) off the ground. The appropriate policy response for the Government of the Republic of Trinidad and Tobago (GORTT) would be to i) establish building codes, ii) develop a comprehensive spatial planning strategy which prohibits people from building structures in unsuitable areas, and iii) implement disaster risk reduction programmes which focus on improving pre-event disaster preparedness, improving the national and local response, and promoting educational awareness.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1762 ◽  
Author(s):  
Nathan Rickards ◽  
Thomas Thomas ◽  
Alexandra Kaelin ◽  
Helen Houghton-Carr ◽  
Sharad K. Jain ◽  
...  

The Narmada river basin is a highly regulated catchment in central India, supporting a population of over 16 million people. In such extensively modified hydrological systems, the influence of anthropogenic alterations is often underrepresented or excluded entirely by large-scale hydrological models. The Global Water Availability Assessment (GWAVA) model is applied to the Upper Narmada, with all major dams, water abstractions and irrigation command areas included, which allows for the development of a holistic methodology for the assessment of water resources in the basin. The model is driven with 17 Global Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to assess the impact of climate change on water resources in the basin for the period 2031–2060. The study finds that the hydrological regime within the basin is likely to intensify over the next half-century as a result of future climate change, causing long-term increases in monsoon season flow across the Upper Narmada. Climate is expected to have little impact on dry season flows, in comparison to water demand intensification over the same period, which may lead to increased water stress in parts of the basin.


Sign in / Sign up

Export Citation Format

Share Document