Computation of Three-Dimensional Turbulent Flows in a Pipe Junction with Reference to Engine Inlet Manifolds

Author(s):  
H Fu ◽  
M J Tindal ◽  
A P Watkins ◽  
M Yianneskis

This paper presents a numerical study of the flows in an internal combustion engine inlet manifold. The three-dimensional turbulent flows through a single branched manifold were simulated using the κ-ɛ model of turbulence. The flow structure was characterized in detail and the effects of the flow split ratio and inlet flowrate were investigated. Detailed measurements were performed to validate the numerical predictions, using laser Doppler anemometry. Good agreement was obtained between the predicted and the measured mean velocities. The predicted levels of turbulence energy are in qualitative agreement with the measurements.

Author(s):  
W N Al-Rafai ◽  
Y D Tridimas ◽  
N H Woolley

An experimental and numerical study of turbulent air flow in circular section pipe bends was carried out in order to determine the influence of bend curvature on the flow. Two bends were used, with inside diameters of 43 mm and curvature ratios of 1:13.95 and 1:6.98. The corresponding Dean numbers were 9138 and 12919. The Reynolds number for both cases was 34132. Measurements of mean streamwise and r.m.s. velocities were made using laser Doppler anemometry. Numerical modelling was based on the commercial computer package ‘PHOENICS’, employing a k-ɛ turbulence model, standard wall functions and a three-dimensional elliptic solution procedure. The results showed that the secondary flow as more prevalent in the smaller bend. In view of certain simplifying assumptions in the theoretical model, encouraging agreement between experimental results and numerical predictions was obtained.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1079
Author(s):  
Lena Mahl ◽  
Patrick Heneka ◽  
Martin Henning ◽  
Roman B. Weichert

The efficiency of a fishway is determined by the ability of immigrating fish to follow its attraction flow (i.e., its jet) to locate and enter the fishway entrance. The hydraulic characteristics of fishway entrance jets can be simplified using findings from widely investigated surface jets produced by shaped nozzles. However, the effect of the different boundary conditions of fishway entrance jets (characterized by vertical entrance slots) compared to nozzle jets must be considered. We investigate the downstream propagation of attraction jets from the vertical slot of a fishway entrance into a quiescent tailrace, considering the following boundary conditions not considered for nozzle jets: (1) slot geometry, (2) turbulence characteristics of the approach flow to the slot, and (3) presence of a lateral wall downstream of the slot. We quantify the effect of these boundary conditions using three-dimensional hydrodynamic-numeric flow simulations with DES and RANS turbulence models and a volume-of-fluid method (VoF) to simulate the free water surface. In addition, we compare jet propagation with existing analytical methods for describing jet propagations from nozzles. We show that a turbulent and inhomogeneous approach flow towards a vertical slot reduces the propagation length of the slot jet in the tailrace due to increased lateral spreading compared to that of a jet produced by a shaped nozzle. An additional lateral wall in the tailrace reduces lateral spreading and significantly increases the propagation length. For highly turbulent flows at fishway entrances, the RANS model tends to overestimate the jet propagation compared to the transient DES model.


1995 ◽  
Vol 117 (1) ◽  
pp. 142-153 ◽  
Author(s):  
J. Moore ◽  
J. G. Moore

Osborne Reynolds’ developments of the concepts of Reynolds averaging, turbulence stresses, and equations for mean kinetic energy and turbulence energy are viewed in the light of 100 years of subsequent flow research. Attempts to use the Reynolds energy-balance method to calculate the lower critical Reynolds number for pipe and channel flows are reviewed. The modern use of turbulence-energy methods for boundary layer transition modeling is discussed, and a current European Working Group effort to evaluate and develop such methods is described. The possibility of applying these methods to calculate transition in pipe, channel, and sink flows is demonstrated using a one-equation, q-L, turbulence model. Recent work using the equation for the kinetic energy of mean motion to gain understanding of loss production mechanisms in three-dimensional turbulent flows is also discussed.


Author(s):  
N. Lymberopoulos ◽  
K. Giannakoglou ◽  
I. Nikolaou ◽  
K. D. Papailiou ◽  
A. Tourlidakis ◽  
...  

Mechanical constraints dictate the existence of tip clearances in rotating cascades, resulting to a flow leakage through this clearance which considerably influences the efficiency and range of operation of the machine. Three-dimensional Navier-Stokes solvers are often used for the numerical study of compressor and turbine stages with tip-clearance. The quality of numerical predictions depends strongly on how accurately the blade tip region is modelled; in this respect the accurate modelling of tip region was one of the main goals of this work. In the present paper, a 3-D Navier-Stokes solver is suitably adapted so that the flat tip surface of a blade and its sharp edges could be accurately modelled, in order to improve the precision of the calculation in the tip region. The adapted code solves the fully elliptic, steady, Navier-Stokes equations through a space-marching algorithm and a pressure correction technique; the H-type topology is retained, even in cases with thick leading edges where a special treatment is introduced herein. The analysis is applied to two different cases, a linear cascade and a compressor rotor, and comparisons with experimental data are provided.


2014 ◽  
Vol 694 ◽  
pp. 187-192
Author(s):  
Jin Xiang Wu ◽  
Jian Sun ◽  
Xiang Gou ◽  
Lian Sheng Liu

The three-dimensional coupled explicit Reynolds Averaged Navier–Stokes (RANS) equations and the two equation shear-stress transport k-w (SST k-w) model has been employed to numerically simulate the cold flow field in a special-shaped cavity-based supersonic combustor. In a cross-section shaped rectangular, hypersonic inlet with airflow at Mach 2.0 chamber, shock structures and flow characteristics of a herringbone-shaped boss and a herringbone-shaped cavity models were discussed, respectively. The results indicate: Firstly, according to the similarities of bevel-cutting shock characteristics between the boss case and the cavity case, the boss structure can serve as an ideal alternative model for shear-layer. Secondly, the eddies within cavity are composed of herringbone-spanwise vortexes, columnar vortices in the front and main-spanwise vortexes in the rear, featuring tilting, twisting and stretching. Thirdly, the simulated bottom-flow of cavity is in good agreement with experimental result, while the reverse flow-entrainment resulting from herringbone geometry and pressure gradient. However, the herringbone-shaped cavity has a better performance in fuel-mixing.


2012 ◽  
Vol 23 (04) ◽  
pp. 1250030 ◽  
Author(s):  
FAYÇAL HAMMAMI ◽  
NADER BEN-CHEIKH ◽  
ANTONIO CAMPO ◽  
BRAHIM BEN-BEYA ◽  
TAIEB LILI

In this work, a numerical study devoted to the two-dimensional and three-dimensional flow of a viscous, incompressible fluid inside a lid-driven cavity is undertaking. All transport equations are solved using the finite volume formulation on a staggered grid system and multi-grid acceleration. Quantitative aspects of two and three-dimensional flows in a lid-driven cavity for Reynolds number Re = 1000 show good agreement with benchmark results. An analysis of the flow evolution demonstrates that, with increments in Re beyond a certain critical value Rec, the steady flow becomes unstable and bifurcates into unsteady flow. It is observed that the transition from steadiness to unsteadiness follows the classical Hopf bifurcation. The time-dependent velocity distribution is studied in detail and the critical Reynolds number is localized for both 2D and 3D cases. Benchmark solutions for 2D and 3D lid-driven cavity flows are performed for Re = 1500 and 6000.


1988 ◽  
Vol 110 (2) ◽  
pp. 129-136 ◽  
Author(s):  
J. M. Khodadadi ◽  
N. S. Vlachos ◽  
D. Liepsch ◽  
S. Moravec

An experimental and numerical study of pulsatile laminar flow in a plane 90-degree bifurcation is presented. Detailed LDA velocity measurements of the oscillatory flow field have been carried out. The numerical predictions, which are based on an iterative, finite-difference numerical procedure using primitive dependent variables, are in good agreement with the measurements. The results show that one separation zone is established near the bottom wall of the main duct and another near the upstream wall of the branch. The location and size of the separation zones vary within the cycle and are influenced by the Reynolds number, the flow rate ratio, and the Stokes number.


1979 ◽  
Vol 101 (3) ◽  
pp. 326-336 ◽  
Author(s):  
M. A. Serag-Eldin ◽  
D. B. Spalding

The paper presents a mathematical model for three-dimensional, swirling, recirculating, turbulent flows inside can combustors. The present model is restricted to single-phase, diffusion-controlled combustion, with negligible radiation heat-transfer; however, the introduction of other available physical models can remove these restrictions. The mathematical model comprises differential equations for: continuity, momentum, stagnation enthalpy, concentration, turbulence energy, its dissipation rate, and the mean square of concentration fluctuations. The simultaneous solution of these equations by means of a finite-difference solution algorithm yields the values of the variables at all internal grid nodes. The prediction procedure, composed of the mathematical model and its solution algorithm, is applied to predict the fields of variables within a representative can combustor; the results are compared with corresponding measurements. The predicted results give the same trends as the measured ones, but the quantitative agreement is not always acceptable; this is attributed to the combustion process not being truly diffusion-controlled for the experimental conditions investigated.


Author(s):  
S-J Seo ◽  
K-Y Kim ◽  
S-H Kang

A numerical study is presented for Reynolds-averaged Navier-Stokes analysis of three-dimensional turbulent flows in a multiblade centrifugal fan. Present work aims at development of a relatively simple analysis method for these complex flows. A mathematical model of impeller forces is obtained from the integral analysis of the flow through the impeller. A finite volume method for discretization of governing equations and a standard k-ɛ model as turbulence closure are employed. For the validation of the mathematical model, the computational results for velocity components, static pressure, and flow angles at the exit of the impeller were compared with experimental data. The comparisons show generally good agreement, especially at higher flow coefficients.


1970 ◽  
Vol 41 (2) ◽  
pp. 453-480 ◽  
Author(s):  
James W. Deardorff

The three-dimensional, primitive equations of motion have been integrated numerically in time for the case of turbulent, plane Poiseuille flow at very large Reynolds numbers. A total of 6720 uniform grid intervals were used, with sub-grid scale effects simulated with eddy coefficients proportional to the local velocity deformation. The agreement of calculated statistics against those measured by Laufer ranges from good to marginal. The eddy shapes are examined, and only theu-component, longitudinal eddies are found to be elongated in the downstream direction. However, the lateralveddies have distinct downstream tilts. The turbulence energy balance is examined, including the separate effects of vertical diffusion of pressure and local kinetic energy.It is concluded that the numerical approach to the problem of turbulence at large Reynolds numbers is already profitable, with increased accuracy to be expected with modest increase of numerical resolution.


Sign in / Sign up

Export Citation Format

Share Document