scholarly journals Analytical Formula for the Mean Velocity Profile in a Pipe Derived on the Basis of a Spatial Polynomial Vorticity Distribution

Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1372
Author(s):  
Jaroslav Štigler

The derivation of the mean velocity profile for a given vorticity distribution over the pipe cross-section is presented in this paper1. The velocity profile and the vorticity distribution are axisymmetric, which means that the radius is the only variable. The importance of the vortex field for the flow analysis is discussed in the paper. The polynomial function with four free parameters is chosen for the vorticity distribution. Free parameters of this function are determined using boundary conditions. There are also two free exponents in the polynomial. These exponents are determined based on the comparison of this analytical formula with experimental data. Experimental data are taken from the Princeton superpipe data which consist of 26 velocity profiles for a wide range of Reynolds numbers (Re). This analytical formula for the mean velocity profile is more precise than the previous one and it is possible to use it for the wide range of Reynolds number <31,577; 35,259,000>. This formula is easy to use, to integrate, or to derivate. The empirical formulas for the profile parameters as a function of Re are also included in this paper. All information for the mean velocity profile prediction in the mentioned Re range are in the paper. It means that it is necessary to know the average velocity v(av), the pipe radius R, and Re to be able to predict the turbulent mean velocity profile in a pipe.

Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 80 ◽  
Author(s):  
Petr Sperka ◽  
Ivan Krupka ◽  
Martin Hartl

Prediction of minimum film thickness is often used in practice for calculation of film parameter to design machine operation in full film regime. It was reported several times that majority of prediction formulas cannot match experimental data in terms of minimum film thickness. These standard prediction formulas give almost constant ratio between central and minimum film thickness while numerical calculations show ratio which spans from 1 to more than 3 depending on M and L parameters. In this paper, an analytical formula of this ratio is presented for lubricants with various pressure–viscosity coefficients. The analytical formula is compared with optical interferometry measurements and differences are discussed. It allows better prediction, compared to standard formulas, of minimum film thickness for wide range of M and L parameters.


Author(s):  
Shinji Honami ◽  
Wataru Tsuboi ◽  
Takaaki Shizawa

This paper presents the effect of flame dome depth on the total pressure performance and flow behavior in a sudden expansion region of the combustor diffuser without flow entering the dome head. The mean velocity and turbulent Reynolds stress profiles in the sudden expansion region were measured by a Laser Doppler Velocitmetry (LDV) system. The experiments show that total pressure loss is increased, when flame dome depth is increased. Installation of an inclined combuster wall in the sudden expansion region is suggested from the viewpoint of a control of the reattaching flow. The inclined combustor wall is found to be effective in improvement of the diffuser performance. Better characteristics of the flow rate distribution into the branched channels are obtained in the inclined wall configuration, even if the distorted velocity profile is provided at the diffuser inlet.


2019 ◽  
Vol 99 (6) ◽  
Author(s):  
Benoît Pinier ◽  
Etienne Mémin ◽  
Sylvain Laizet ◽  
Roger Lewandowski

1982 ◽  
Vol 123 ◽  
pp. 523-535 ◽  
Author(s):  
J. W. Oler ◽  
V. W. Goldschmidt

The mean-velocity profiles and entrainment rates in the similarity region of a two-dimensional jet are generated by a simple superposition of Rankine vortices arranged to represent a vortex street. The spacings between the vortex centres, their two-dimensional offsets from the centreline, as well as the core radii and circulation strengths, are all governed by similarity relationships and based upon experimental data.Major details of the mean flow field such as the axial and lateral mean-velocity components and the magnitude of the Reynolds stress are properly determined by the model. The sign of the Reynolds stress is, however, not properly predicted.


1982 ◽  
Vol 119 ◽  
pp. 423-441 ◽  
Author(s):  
M. A. Goldshtik ◽  
V. V. Zametalin ◽  
V. N. Shtern

We propose a simplified theory of a viscous layer in near-wall turbulent flow that determines the mean-velocity profile and integral characteristics of velocity fluctuations. The theory is based on the concepts resulting from the experimental data implying a relatively simple almost-ordered structure of fluctuations in close proximity to the wall. On the basis of data on the greatest contribution to transfer processes made by the part of the spectrum associated with the main size of the observed structures, the turbulent fluctuations are simulated by a three-dimensional running wave whose parameters are found from the problem solution. Mathematically the problem reduces to the solution of linearized Navier-Stokes equations. The no-slip condition is satisfied on the wall, whereas on the outer boundary of a viscous layer the conditions of smooth conjunction with the asymptotic shape of velocity and fluctuation-energy profiles resulting from the dimensional analysis are satisfied. The formulation of the problem is completed by the requirement of maximum curvature of the mean-velocity profile on the outer boundary applied from stability considerations.The solution of the problem does not require any quantitative empirical data, although the conditions of conjunction were formulated according to the well-known concepts obtained experimentally. As a result, the near-wall law for the averaged velocity has been calculated theoretically and is in good agreement with experiment, and the characteristic scales for fluctuations have also been determined. The developed theory is applied to turbulent-flow calculations in Maxwell and Oldroyd media. The elastic properties of fluids are shown to lead to near-wall region reconstruction and its associated drag reduction, as is the case in turbulent flows of dilute polymer solutions. This theory accounts for several features typical of the Toms effect, such as the threshold character of the effect and the decrease in the normal fluctuating velocity. The analysis of the near-wall Oldroyd fluid flow permits us to elucidate several new aspects of the drag-reduction effect. It has been established that the Toms effect does not always result in thickening of the viscous sublayer; on the contrary, the most intense drag reduction takes place without thickening in the viscous sublayer.


2002 ◽  
Vol 124 (3) ◽  
pp. 664-670 ◽  
Author(s):  
Donald J. Bergstrom ◽  
Nathan A. Kotey ◽  
Mark F. Tachie

Experimental measurements of the mean velocity profile in a canonical turbulent boundary layer are obtained for four different surface roughness conditions, as well as a smooth wall, at moderate Reynolds numbers in a wind tunnel. The mean streamwise velocity component is fitted to a correlation which allows both the strength of the wake, Π, and friction velocity, Uτ, to vary. The results show that the type of surface roughness affects the mean defect profile in the outer region of the turbulent boundary layer, as well as determining the value of the skin friction. The defect profiles normalized by the friction velocity were approximately independent of Reynolds number, while those normalized using the free stream velocity were not. The fact that the outer flow is significantly affected by the specific roughness characteristics at the wall implies that rough wall boundary layers are more complex than the wall similarity hypothesis would allow.


2016 ◽  
Vol 797 ◽  
Author(s):  
Dan Li ◽  
Scott T. Salesky ◽  
Tirtha Banerjee

The mean velocity profile (MVP) in thermally stratified atmospheric surface layers (ASLs) deviates from the classic logarithmic form. A theoretical framework was recently proposed (Katulet al.Phys. Rev. Lett., vol. 107, 2011, 268502) to link the MVP to the spectrum of turbulence and was found to successfully predict the MVP for unstable stratification. However, the theory failed to reproduce the MVP in stable conditions (Saleskyet al.Phys. Fluids, vol. 25, 2013, 105101), especially when${\it\zeta}>0.2$(where${\it\zeta}$is the atmospheric stability parameter). In the present study, it is demonstrated that this shortcoming is due to the failure to identify the appropriate length scale that characterizes the size of momentum transporting eddies in the stable ASL. Beyond${\it\zeta}\approx 0.2$(near where the original theory fails), the Ozmidov length scale becomes smaller than the distance from the wall$z$and hence is a more stringent constraint for characterizing the size of turbulent eddies. An expression is derived to connect the Ozmidov length scale to the normalized MVP (${\it\phi}_{m}$), allowing${\it\phi}_{m}$to be solved numerically. It is found that the revised theory produces a prediction of${\it\phi}_{m}$in good agreement with the widely used empirical Businger–Dyer relation and two experimental datasets in the stable ASL. The results here demonstrate that the behaviour of${\it\phi}_{m}$in the stable ASL is closely linked to the size of momentum transporting eddies, which can be characterized by the Ozmidov scale under mildly to moderately stable conditions ($0.2<{\it\zeta}<1-2$).


2014 ◽  
Vol 926-930 ◽  
pp. 1538-1541
Author(s):  
Hao Wang ◽  
Guo Quan Liu

Three-dimensional normal grain growth has been simulated in scale 300×300×300 using the generally accepted Potts model Monte Carlo method. The studies of the topology of grains indicate that the mean number of faces in the grain network <f>=13.91 is similar to other simulation results, but higher than most of the experimental data which containing a wide range of values, i.e., <f>=11.16~13.93. The three-dimensional AboavWeaire law and Liu-Yu law are observed to hold, but the fit coefficient is different from the theory models.


2016 ◽  
Vol 801 ◽  
pp. 670-703 ◽  
Author(s):  
Hangjian Ling ◽  
Siddarth Srinivasan ◽  
Kevin Golovin ◽  
Gareth H. McKinley ◽  
Anish Tuteja ◽  
...  

Digital holographic microscopy is used for characterizing the profiles of mean velocity, viscous and Reynolds shear stresses, as well as turbulence level in the inner part of turbulent boundary layers over several super-hydrophobic surfaces (SHSs) with varying roughness/texture characteristics. The friction Reynolds numbers vary from 693 to 4496, and the normalized root mean square values of roughness $(k_{rms}^{+})$ vary from 0.43 to 3.28. The wall shear stress is estimated from the sum of the viscous and Reynolds shear stress at the top of roughness elements and the slip velocity is obtained from the mean profile at the same elevation. For flow over SHSs with $k_{rms}^{+}<1$, drag reduction and an upward shift of the mean velocity profile occur, along with a mild increase in turbulence in the inner part of the boundary layer. As the roughness increases above $k_{rms}^{+}\sim 1$, the flow over the SHSs transitions from drag reduction, where the viscous stress dominates, to drag increase where the Reynolds shear stress becomes the primary contributor. For the present maximum value of $k_{rms}^{+}=3.28$, the inner region exhibits the characteristics of a rough wall boundary layer, including elevated wall friction and turbulence as well as a downward shift in the mean velocity profile. Increasing the pressure in the test facility to a level that compresses the air layer on the SHSs and exposes the protruding roughness elements reduces the extent of drag reduction. Aligning the roughness elements in the streamwise direction increases the drag reduction. For SHSs where the roughness effect is not dominant ($k_{rms}^{+}<1$), the present measurements confirm previous theoretical predictions of the relationships between drag reduction and slip velocity, allowing for both spanwise and streamwise slip contributions.


Sign in / Sign up

Export Citation Format

Share Document