film parameter
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
pp. 1-44
Author(s):  
Jeng-haur Horng ◽  
Chia-Chun Yu ◽  
Yang-Yuan Chen

Abstract The third particle occurred at the interface of contacting surfaces is common situations in relative motion part. This study involved developing an analysis framework to investigate the contact characteristics in the full range of 3-body mixed lubrication. Conventional 2-body mixed lubrication is a special case of 3-body mixed lubrication analysis with particle size of zero. This study revealed that the values of real contact area, film thickness, contact mode, and the solid contact load in 3-body contact were larger than those in ideal 2-body contact in mixed lubrication, and they increased with an increasing particle size or density under the study conditions. The initial stages and transition processes of four types of 3-body contact modes under mixed lubrication were significantly different for different particle sizes and densities. The size of the third particle increased the values of both minimum and maximum values, λmin and λmax, of film parameter in the mixed lubrication regime. The particle density did not have a significant effect on the λmax value in mixed lubrication. Higher particle density led to a larger λmin value in mixed lubrication. The conventional film parameter, λ, was not a sufficient indicator of the different lubrication regimes in 3-body contact.


2021 ◽  
Vol 69 (2) ◽  
Author(s):  
Jonny Hansen ◽  
Marcus Björling ◽  
Roland Larsson

AbstractNumerous tribological contacts worldwide rely on adequate lubrication quality for proper functionality. Despite this, there is no existing approach to accurately predict the state of lubrication. The default model since introduced in the 1960s—the $$\Lambda$$ Λ -ratio, defined as the oil film thickness over the surface roughness height—is unpredictable and may yield erroneous results. Here, we put forward a framework for a new updated film parameter, $${\Lambda }^{*}$$ Λ ∗ , which accounts for the elasto-hydrodynamic lubrication (EHL) effects induced by surface irregularities on the microscopic scale (micro-EHL). This new film parameter was validated in ball-on-disc tribological tests with engineering surfaces comprising isotropic and anisotropic structures. As expected, the new model was found to accurately predict the experimentally measured true mixed and full-film EHL regimes. The ability to accurately predict the mode of lubrication represents a major advance in designing tribological interfaces for optimal efficiency and durability.


Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 80 ◽  
Author(s):  
Petr Sperka ◽  
Ivan Krupka ◽  
Martin Hartl

Prediction of minimum film thickness is often used in practice for calculation of film parameter to design machine operation in full film regime. It was reported several times that majority of prediction formulas cannot match experimental data in terms of minimum film thickness. These standard prediction formulas give almost constant ratio between central and minimum film thickness while numerical calculations show ratio which spans from 1 to more than 3 depending on M and L parameters. In this paper, an analytical formula of this ratio is presented for lubricants with various pressure–viscosity coefficients. The analytical formula is compared with optical interferometry measurements and differences are discussed. It allows better prediction, compared to standard formulas, of minimum film thickness for wide range of M and L parameters.


2017 ◽  
Vol 19 (3) ◽  
pp. 75-82 ◽  
Author(s):  
Ahad Ghaemi

Abstract In this research, thermodynamic and absorption rate of carbon dioxide in monoethanolamine (MEA) solution was investigated. A correlation based on both liquid and a gas phase variable for carbon dioxide absorption rate was presented using the π-Buckingham theorem. The correlation was constructed based on dimensionless numbers, including carbon dioxide loading, carbon dioxide partial pressure, film parameter and the ratio of liquid phase film thickness and gas phase film thickness. The film parameter is used to apply the effect of chemical reactions on absorption rate. A thermodynamic model based on the extended-UNIQUAC equations for the activity coefficients coupled with the Virial equation of state for representing the non-ideality of the vapor phase was used to predict the CO2 solubility in the CO2-MEA-H2O system. The average absolute error of the results for the correlation was 6.4%, which indicates the accuracy of the proposed correlation.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Hiroyuki Ohta ◽  
Yuko Nakajima ◽  
Soichiro Kato ◽  
Hideyuki Tajimi

This paper deals with vibration and acoustic emission (AE) measurements evaluating the separation of the balls and raceways with lubricating film in a linear-guideway–type recirculating ball bearing (linear bearing) under grease lubrication. In the experiments, three types of commercial grease, AS2, LG2, and PS2, were used. The vibratory acceleration, AE, temperature, and electric conductivity (contact voltage) in the test bearing were measured, while a carriage of the test bearing was driven at a certain linear velocity. Experimental results showed that the measured vibratory acceleration, AE, and contact voltage of the test bearing were affected by the linear velocity and the base oil viscosity of the grease. Next, the rail side film parameter ΛR and the carriage side film parameter ΛC were examined for the test bearing in operation, and it was shown that the ΛR value was lower than the ΛC value. In addition, a condition for the separation of all the balls and raceways with lubricating film was presented. Finally, it was shown that the measured root-mean-square (RMS) values of vibratory acceleration or AE can be used for evaluating the separation of all the balls and raceways with lubricating film in the test bearing.


Sign in / Sign up

Export Citation Format

Share Document