scholarly journals GPM Annual and Daily Precipitation Data for Real-Time Short-Term Nowcasting: A Pilot Study for a Way Forward in Data Assimilation

Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1422
Author(s):  
Kaiyang Wang ◽  
Lingrong Kong ◽  
Zixin Yang ◽  
Prateek Singh ◽  
Fangyu Guo ◽  
...  

This study explores the quality of data produced by Global Precipitation Measurement (GPM) and the potential of GPM for real-time short-term nowcasting using MATLAB and the Short-Term Ensemble Prediction System (STEPS). Precipitation data obtained by rain gauges during the period 2015 to 2017 were used in this comparative analysis. The results show that the quality of GPM precipitation has different degrees efficacies at the national scale, which were revealed at the performance analysis stage of the study. After data quality checking, five representative precipitation events were selected for nowcasting evaluation. The GPM estimated precipitation compared to a 30 min forecast using STEPS precipitation nowcast results, showing that the GPM precipitation data performed well in nowcasting between 0 to 120 min. However, the accuracy and quality of nowcasting precipitation significantly reduced with increased lead time. A major finding from the study is that the quality of precipitation data can be improved through blending processes such as kriging with external drift and the double-kernel smoothing method, which enhances the quality of nowcast over longer lead times.

Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 458 ◽  
Author(s):  
Zhenzhen Liu ◽  
Qiang Dai ◽  
Lu Zhuo

Radar rainfall nowcasts are subject to many sources of uncertainty and these uncertainties change with the characteristics of a storm. The predictive skill of a radar rainfall nowcasting model can be difficult to understand as sometimes it appears to be perfect but at other times it is highly inaccurate. This hinders the decision making required for the early warning of natural hazards caused by rainfall. In this study we define radar spatial and temporal rainfall variability and relate them to the predictive skill of a nowcasting model. The short-term ensemble prediction system model is configured to predict 731 events with lead times of one, two, and three hours. The nowcasting skill is expressed in terms of six well-known indicators. The results show that the quality of radar rainfall nowcasts increases with the rainfall autocorrelation and decreases with the rainfall variability coefficient. The uncertainty of radar rainfall nowcasts also shows a positive connection with rainfall variability. In addition, the spatial variability is more important than the temporal variability. Based on these results, we recommend that the lead time for radar rainfall nowcasting models should change depending on the storm and that it should be determined according to the rainfall variability. Such measures could improve trust in the rainfall nowcast products that are used for hydrological and meteorological applications.


2009 ◽  
Vol 24 (3) ◽  
pp. 812-828 ◽  
Author(s):  
Young-Mi Min ◽  
Vladimir N. Kryjov ◽  
Chung-Kyu Park

Abstract A probabilistic multimodel ensemble prediction system (PMME) has been developed to provide operational seasonal forecasts at the Asia–Pacific Economic Cooperation (APEC) Climate Center (APCC). This system is based on an uncalibrated multimodel ensemble, with model weights inversely proportional to the errors in forecast probability associated with the model sampling errors, and a parametric Gaussian fitting method for the estimate of tercile-based categorical probabilities. It is shown that the suggested method is the most appropriate for use in an operational global prediction system that combines a large number of models, with individual model ensembles essentially differing in size and model weights in the forecast and hindcast datasets being inconsistent. Justification for the use of a Gaussian approximation of the precipitation probability distribution function for global forecasts is also provided. PMME retrospective and real-time forecasts are assessed. For above normal and below normal categories, temperature forecasts outperform climatology for a large part of the globe. Precipitation forecasts are definitely more skillful than random guessing for the extratropics and climatological forecasts for the tropics. The skill of real-time forecasts lies within the range of the interannual variability of the historical forecasts.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Woochul Kang ◽  
Jaeyong Chung

With ubiquitous deployment of sensors and network connectivity, amounts of real-time data for embedded systems are increasing rapidly and database capability is required for many embedded systems for systematic management of real-time data. In such embedded systems, supporting the timeliness of tasks accessing databases is an important problem. However, recent multicore-based embedded architectures pose a significant challenge for such data-intensive real-time tasks since the response time of accessing data can be significantly affected by potential intercore interferences. In this paper, we propose a novel feedback control scheme that supports the timeliness of data-intensive tasks against unpredictable intercore interferences. In particular, we use multiple inputs/multiple outputs (MIMO) control method that exploits multiple control knobs, for example, CPU frequency and the Quality-of-Data (QoD) to handle highly unpredictable workloads in multicore systems. Experimental results, using actual implementation, show that the proposed approach achieves the target Quality-of-Service (QoS) goals, such as task timeliness and Quality-of-Data (QoD) while consuming less energy compared to baseline approaches.


2021 ◽  
Author(s):  
Carlos Velasco-Forero ◽  
Jayaram Pudashine ◽  
Mark Curtis ◽  
Alan Seed

<div> <p>Short-term precipitation forecast plays a vital role for minimizing the adverse effects of heavy precipitation events such as flash flooding.  Radar rainfall nowcasting techniques based on statistical extrapolations are used to overcome current limitations of precipitation forecasts from numerical weather models, as they provide high spatial and temporal resolutions forecasts within minutes of the observation time. Among various algorithms, the Short-Term Ensemble Prediction System (STEPS) provides rainfall fields nowcasts in a probabilistic sense by accounting the uncertainty in the precipitation forecasts by means of ensembles, with spatial and temporal characteristic very similar to those in the observed radar rainfall fields. The Australian Bureau of Meteorology uses STEPS to generate ensembles of forecast rainfall ensembles in real-time from its extensive weather radar network. </p> </div><div> <p>In this study, results of a large probabilistic verification exercise to a new version of STEPS (hereafter named STEPS-3) are reported. An extensive dataset of more than 47000 individual 5-minute radar rainfall fields (the equivalent of more than 163 days of rain) from ten weather radars across Australia (covering tropical to mid-latitude regions) were used to generate (and verify) 96-member rainfall ensembles nowcasts with up to a 90-minute lead time. STEPS-3 was found to be more than 15-times faster in delivering results compared with previous version of STEPS and an open-source algorithm called pySTEPS. Interestingly, significant variations were observed in the quality of predictions and verification results from one radar to other, from one event to other, depending on the characteristics and location of the radar, nature of the rainfall event, accumulation threshold and lead time. For example, CRPS and RMSE of ensembles of 5-min rainfall forecasts for radars located in mid-latitude regions are better (lower) than those ones from radars located in tropical areas for all lead-times. Also, rainfall fields from S-band radars seem to produce rainfall forecasts able to successfully identify extreme rainfall events for lead times up to 10 minutes longer than those produced using C-band radar datasets for the same rain rate thresholds. Some details of the new STEPS-3 version, case studies and examples of the verification results will be presented. </p> </div>


2021 ◽  
Vol 13 (24) ◽  
pp. 5174
Author(s):  
Magfira Syarifuddin ◽  
Susanna F. Jenkins ◽  
Ratih Indri Hapsari ◽  
Qingyuan Yang ◽  
Benoit Taisne ◽  
...  

Tephra plumes can cause a significant hazard for surrounding towns, infrastructure, and air traffic. The current work presents the use of a small and compact X-band multi-parameter (X-MP) radar for the remote tephra detection and tracking of two eruptive events at Merapi Volcano, Indonesia, in May and June 2018. Tephra detection was performed by analysing the multiple parameters of radar: copolar correlation and reflectivity intensity factor. These parameters were used to cancel unwanted clutter and retrieve tephra properties, which are grain size and concentration. Real-time spatial and temporal forecasting of tephra dispersal was performed by applying an advection scheme (nowcasting) in the manner of an ensemble prediction system (EPS). Cross-validation was performed using field-survey data, radar observations, and Himawari-8 imageries. The nowcasting model computed both the displacement and growth and decaying rate of the plume based on the temporal changes in two-dimensional movement and tephra concentration, respectively. Our results are in agreement with ground-based data, where the radar-based estimated grain size distribution falls within the range of in situ grain size. The uncertainty of real-time forecasted tephra plume depends on the initial condition, which affects the growth and decaying rate estimation. The EPS improves the predictability rate by reducing the number of missed and false forecasted events. Our findings and the method presented here are suitable for early warning of tephra fall hazard at the local scale.


2019 ◽  
Vol 11 (24) ◽  
pp. 2936 ◽  
Author(s):  
Yagmur Derin ◽  
Emmanouil Anagnostou ◽  
Alexis Berne ◽  
Marco Borga ◽  
Brice Boudevillain ◽  
...  

The great success of the Tropical Rainfall Measuring Mission (TRMM) and its successor Global Precipitation Measurement (GPM) has accelerated the development of global high-resolution satellite-based precipitation products (SPP). However, the quantitative accuracy of SPPs has to be evaluated before using these datasets in water resource applications. This study evaluates the following GPM-era and TRMM-era SPPs based on two years (2014–2015) of reference daily precipitation data from rain gauge networks in ten mountainous regions: Integrated Multi-SatellitE Retrievals for GPM (IMERG, version 05B and version 06B), National Oceanic and Atmospheric Administration (NOAA)/Climate Prediction Center Morphing Method (CMORPH), Global Satellite Mapping of Precipitation (GSMaP), and Multi-Source Weighted-Ensemble Precipitation (MSWEP), which represents a global precipitation data-blending product. The evaluation is performed at daily and annual temporal scales, and at 0.1 deg grid resolution. It is shown that GSMaPV07 surpass the performance of IMERGV06B Final for almost all regions in terms of systematic and random error metrics. The new orographic rainfall classification in the GSMaPV07 algorithm is able to improve the detection of orographic rainfall, the rainfall amounts, and error metrics. Moreover, IMERGV05B showed significantly better performance, capturing the lighter and heavier precipitation values compared to IMERGV06B for almost all regions due to changes conducted to the morphing, where motion vectors are derived using total column water vapor for IMERGV06B.


2020 ◽  
Vol 162 ◽  
pp. 1321-1339
Author(s):  
Josselin Le Gal La Salle ◽  
Jordi Badosa ◽  
Mathieu David ◽  
Pierre Pinson ◽  
Philippe Lauret

2021 ◽  
Vol 13 (4) ◽  
pp. 826 ◽  
Author(s):  
Harold Llauca ◽  
Waldo Lavado-Casimiro ◽  
Karen León ◽  
Juan Jimenez ◽  
Kevin Traverso ◽  
...  

This study investigates the applicability of Satellite Precipitation Products (SPPs) in near real-time for the simulation of sub-daily runoff in the Vilcanota River basin, located in the southeastern Andes of Peru. The data from rain gauge stations are used to evaluate the quality of Integrated Multi-satellite Retrievals for GPM–Early (IMERG-E), Global Satellite Mapping of Precipitation–Near Real-Time (GSMaP-NRT), Climate Prediction Center Morphing Method (CMORPH), and HydroEstimator (HE) at the pixel-station level; and these SPPs are used as meteorological inputs for the hourly hydrological modeling. The GR4H model is calibrated with the hydrometric station of the longest record, and model simulations are also verified at one station upstream and two stations downstream of the calibration point. Comparing the sub-daily precipitation data observed, the results show that the IMERG-E product generally presents higher quality, followed by GSMaP-NRT, CMORPH, and HE. Although the SPPs present positive and negative biases, ranging from mild to moderate, they do represent the diurnal and seasonal variability of the hourly precipitation in the study area. In terms of the average of Kling-Gupta metric (KGE), the GR4H_GSMaP-NRT’ yielded the best representation of hourly discharges (0.686), followed by GR4H_IMERG-E’ (0.623), GR4H_Ensemble-Mean (0.617) and GR4H_CMORPH’ (0.606), and GR4H_HE’ (0.516). Finally, the SPPs showed a high potential for monitoring floods in the Vilcanota basin in near real-time at the operational level. The results obtained in this research are very useful for implementing flood early warning systems in the Vilcanota basin and will allow the monitoring and short-term hydrological forecasting of floods by the Peruvian National Weather and Hydrological Service.


Geomatics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 81-91
Author(s):  
Amit Bhardwaj ◽  
Vinay Kumar ◽  
Anjali Sharma ◽  
Tushar Sinha ◽  
Surendra Pratap Singh

One widely recognized portal which provides numerical weather prediction forecasts is “The Observing System Research and Predictability Experiment” (THORPEX) Interactive Grand Global Ensemble (TIGGE), an initiative of WMO project. This data portal provides forecasts from 1 to 16 days (2 weeks in advance) for many variables such as rainfall, winds, geopotential height, temperature, and relative humidity. These weather forecasting centers have delivered near-real-time (with a delay of 48 hours) ensemble prediction system data to three TIGGE data archives since October 2006. This study is based on six years (2008–2013) of daily rainfall data by utilizing output from six centers, namely the European Centre for Medium-Range Weather Forecasts, the National Centre for Environmental Prediction, the Center for Weather Forecast and Climatic Studies, the China Meteorological Agency, the Canadian Meteorological Centre, and the United Kingdom Meteorological Office, and make consensus forecasts of up to 10 days lead time by utilizing the multimodal multilinear regression technique. The prediction is made over the Indian subcontinent, including the Indian Ocean. TRMM3B42 daily rainfall is used as the benchmark to construct the multimodel superensemble (SE) rainfall forecasts. Based on statistical ability ratings, the SE offers a better near-real-time forecast than any single model. On the one hand, the model from the European Centre for Medium-Range Weather Forecasting and the UK Met Office does this more reliably over the Indian domain. In a case of Indian monsoon onset, 05 June 2014, SE carries the lowest RMSE of 8.5 mm and highest correlation of 0.49 among six member models. Overall, the performance of SE remains better than any individual member model from day 1 to day 10.


Sign in / Sign up

Export Citation Format

Share Document