scholarly journals Comparative Analysis of Runoff and Evaporation Assessment Methods to Evaluate Wetland–Groundwater Interaction in Mediterranean Evaporitic-Karst Aquatic Ecosystem

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1482
Author(s):  
José Manuel Gil-Márquez ◽  
Bartolomé Andreo ◽  
Matías Mudarra

This work compares the applicability of several free-surface evaporation and runoff equations in simulating water level variations of small Mediterranean wetlands. The Amarga and Jarales wetland are two pilot sites with an evaporite-karst genesis located in southern Spain. The water level was continuously recorded in both wetlands, and exhaustive weather monitoring was performed. The combined datasets have permitted quantification of the surficial elements of their water budget (precipitation, runoff, and evaporation). Several campaigns of groundwater level measurements were also done to characterize the direction of groundwater flows. The morphometrical analysis of the Jarales wetland was accurately performed based on a LiDAR dataset. A total of 225 limnimetric simulations of the Jarales (90) and Amarga (135) wetlands were performed, combining different evaporation and runoff equations. During the study period, the curve number method, coupled with the Penman equation, reached the Jarales wetland’s best calibrations. The Vardavas–Fountoulakis modification of the Penman model fit better with the Amarga wetland record. The obtained results permit specification of the water budget of both wetlands during several years and confirm that the groundwater–surface water relationship affects the wetland hydric dynamic to different degrees. Nonetheless, the limnimetric models were calibrated for a short period, including dry years, making it necessary to extend the control period longer and validate the models under different hydroclimatic conditions. Finally, the differences between wetland functioning are explained in a conceptual hydrological model that can be useful for wetland conservation and management of related aquatic ecosystems. The understanding of the origin and fate of water in wetlands permits assessment of how future scenarios would affect hydric functioning and suggests adequate conservation measurements.

1994 ◽  
Vol 56 (2) ◽  
pp. 179-189 ◽  
Author(s):  
Gustav Wagner ◽  
Barbara Mahmoudian ◽  
Heinz Gerd Schröder

2018 ◽  
Author(s):  
Alfredo L. Aretxabaleta ◽  
Neil K. Ganju ◽  
Zafer Defne ◽  
Richard P. Signell

Abstract. Water level in semi-enclosed bays, landward of barrier islands, is mainly driven by offshore sea level fluctuations that are modulated by bay geometry and bathymetry, causing spatial variability in the ensuing response (transfer). Local wind setup can have a secondary role that depends on wind speed, fetch, and relative orientation of the wind direction and the bay. Inlet geometry and bathymetry primarily regulate the magnitude of the transfer between open ocean and bay. Tides and short-period offshore oscillations are more damped in the bays than longer-lasting offshore fluctuations, such as storm surge and sea level rise. We compare observed and modeled water levels at stations in a mid-Atlantic bay (Barnegat Bay) with offshore water level proxies. Observed water levels in Barnegat Bay are compared and combined with model results from the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system to evaluate the spatial structure of the water level transfer. Analytical models based on the dimensional characteristics of the bay are used to combine the observed data and the numerical model results in a physically consistent approach. Model water level transfers match observed values at locations inside the Bay in the storm frequency band (transfers ranging from 70–100 %) and tidal frequencies (10–55 %). The contribution of frequency-dependent local setup caused by wind acting along the bay is also considered. The approach provides transfer estimates for locations inside the Bay where observations were not available resulting in a complete spatial characterization. The approach allows for the study of the Bay response to alternative forcing scenarios (landscape changes, future storms, and rising sea level). Detailed spatial estimates of water level transfer can inform decisions on inlet management and contribute to the assessment of current and future flooding hazard in back-barrier bays and along mainland shorelines.


Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 58
Author(s):  
Ahmed Naseh Ahmed Hamdan ◽  
Suhad Almuktar ◽  
Miklas Scholz

It has become necessary to estimate the quantities of runoff by knowing the amount of rainfall to calculate the required quantities of water storage in reservoirs and to determine the likelihood of flooding. The present study deals with the development of a hydrological model named Hydrologic Engineering Center (HEC-HMS), which uses Digital Elevation Models (DEM). This hydrological model was used by means of the Geospatial Hydrologic Modeling Extension (HEC-GeoHMS) and Geographical Information Systems (GIS) to identify the discharge of the Al-Adhaim River catchment and embankment dam in Iraq by simulated rainfall-runoff processes. The meteorological models were developed within the HEC-HMS from the recorded daily rainfall data for the hydrological years 2015 to 2018. The control specifications were defined for the specified period and one day time step. The Soil Conservation Service-Curve number (SCS-CN), SCS Unit Hydrograph and Muskingum methods were used for loss, transformation and routing calculations, respectively. The model was simulated for two years for calibration and one year for verification of the daily rainfall values. The results showed that both observed and simulated hydrographs were highly correlated. The model’s performance was evaluated by using a coefficient of determination of 90% for calibration and verification. The dam’s discharge for the considered period was successfully simulated but slightly overestimated. The results indicated that the model is suitable for hydrological simulations in the Al-Adhaim river catchment.


1970 ◽  
Vol 7 (2) ◽  
pp. 607-625 ◽  
Author(s):  
G. C. Dohler ◽  
L. F. Ku

The methods and problems involved in collecting water level data are explained, and the processing and formats of the data are illustrated. The trend of the change in mean water level is plotted and the corresponding rate of change is estimated by the regression technique. The power spectra of the water level variations are plotted to illustrate these variations in terms of frequencies.


In a paper communicated to the Royal Meteorological Society, it was shown that the experimental well at Kew Observatory responded to the lunar fortnightly oscillation of mean level in the River Thames, which is 300 yards from the Observatory at its nearest point. The sensitiveness of the water-level to barometric pressure has also been investigated, and the results have been given in a paper recently read before the Royal Society. The present paper deals with the effects of the short-period tides in the solar and lunar series, S 1 , S 2 , S 3 , S 4 , and M 1 , M 2 , M 3 , M 4 . Two-hourly measurements, both in lunar and solar time, were made on the traces obtained during the first two years, August, 1914-August, 1916, omitting days of very irregular movement. Monthly mean inequalities were then computed. Well marked solar and lunar diurnal variations were found in each month, taking the form of double oscillations with two maxima and two minima during the 24 hours. The range of movement was in each case found to be highly associated with the mean height of the water in the well, the correlation coefficients being 0·89 (lunar) and 0·90 (solar). A similar relation had been previously found to exist in the case of barometric pressure.


2021 ◽  
Author(s):  
Erwan Garel ◽  
Ping Zhang ◽  
Huayang Cai

Abstract. Observations indicate that the fortnightly fluctuations in mean water level increase in amplitude along the lower half of a tide-dominated estuary (The Guadiana estuary) with negligible river discharge but remain constant upstream. Analytical solutions reproducing the semi-diurnal wave propagation shows that this pattern results from reflection effects at the estuary head. The phase difference between velocity and elevation increases from the mouth to the head (where the wave has a standing nature) as the high and low water levels get progressively closer to slack water. Thus, the tidal (flood-ebb) asymmetry in discharge is reduced in the upstream direction. It becomes negligible along the upper estuary half, as the mean sea level remains constant despite increased friction due to wave shoaling. Observations of a flat mean water level along a significant portion of an upper estuary, easier to obtain than the phase difference, can therefore indicate significant reflection of the propagating semi-diurnal wave at the head. Details of the analytical model shows that changes in the mean depth or length of semi-arid estuaries, in particular for macrotidal locations, affect the fortnightly tide amplitude, and thus the upstream mass transport and inundation regime. This has significant potential impacts on the estuarine environment.


Sign in / Sign up

Export Citation Format

Share Document