scholarly journals Comparison between Deep Learning and Tree-Based Machine Learning Approaches for Landslide Susceptibility Mapping

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2664
Author(s):  
Sunil Saha ◽  
Jagabandhu Roy ◽  
Tusar Kanti Hembram ◽  
Biswajeet Pradhan ◽  
Abhirup Dikshit ◽  
...  

The efficiency of deep learning and tree-based machine learning approaches has gained immense popularity in various fields. One deep learning model viz. convolution neural network (CNN), artificial neural network (ANN) and four tree-based machine learning models, namely, alternative decision tree (ADTree), classification and regression tree (CART), functional tree and logistic model tree (LMT), were used for landslide susceptibility mapping in the East Sikkim Himalaya region of India, and the results were compared. Landslide areas were delimited and mapped as landslide inventory (LIM) after gathering information from historical records and periodic field investigations. In LIM, 91 landslides were plotted and classified into training (64 landslides) and testing (27 landslides) subsets randomly to train and validate the models. A total of 21 landslide conditioning factors (LCFs) were considered as model inputs, and the results of each model were categorised under five susceptibility classes. The receiver operating characteristics curve and 21 statistical measures were used to evaluate and prioritise the models. The CNN deep learning model achieved the priority rank 1 with area under the curve of 0.918 and 0.933 by using the training and testing data, quantifying 23.02% and 14.40% area as very high and highly susceptible followed by ANN, ADtree, CART, FTree and LMT models. This research might be useful in landslide studies, especially in locations with comparable geophysical and climatological characteristics, to aid in decision making for land use planning.

2021 ◽  
Author(s):  
Rui Liu ◽  
Xin Yang ◽  
Chong Xu ◽  
Luyao Li ◽  
Xiangqiang Zeng

Abstract Landslide susceptibility mapping (LSM) is a useful tool to estimate the probability of landslide occurrence, providing a scientific basis for natural hazards prevention, land use planning, and economic development in landslide-prone areas. To date, a large number of machine learning methods have been applied to LSM, and recently the advanced Convolutional Neural Network (CNN) has been gradually adopted to enhance the prediction accuracy of LSM. The objective of this study is to introduce a CNN based model in LSM and systematically compare its overall performance with the conventional machine learning models of random forest, logistic regression, and support vector machine. Herein, we selected the Jiuzhaigou region in Sichuan Province, China as the study area. A total number of 710 landslides and 12 predisposing factors were stacked to form spatial datasets for LSM. The ROC analysis and several statistical metrics, such as accuracy, root mean square error (RMSE), Kappa coefficient, sensitivity, and specificity were used to evaluate the performance of the models in the training and validation datasets. Finally, the trained models were calculated and the landslide susceptibility zones were mapped. Results suggest that both CNN and conventional machine-learning based models have a satisfactory performance (AUC: 85.72% − 90.17%). The CNN based model exhibits excellent good-of-fit and prediction capability, and achieves the highest performance (AUC: 90.17%) but also significantly reduces the salt-of-pepper effect, which indicates its great potential of application to LSM.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2293
Author(s):  
Zixiang Yue ◽  
Youliang Ding ◽  
Hanwei Zhao ◽  
Zhiwen Wang

A cable-stayed bridge is a typical symmetrical structure, and symmetry affects the deformation characteristics of such bridges. The main girder of a cable-stayed bridge will produce obvious deflection under the inducement of temperature. The regression model of temperature-induced deflection is hoped to provide a comparison value for bridge evaluation. Based on the temperature and deflection data obtained by the health monitoring system of a bridge, establishing the correlation model between temperature and temperature-induced deflection is meaningful. It is difficult to complete a high-quality model only by the girder temperature. The temperature features based on prior knowledge from the mechanical mechanism are used as the input information in this paper. At the same time, to strengthen the nonlinear ability of the model, this paper selects an independent recurrent neural network (IndRNN) for modeling. The deep learning neural network is compared with machine learning neural networks to prove the advancement of deep learning. When only the average temperature of the main girder is input, the calculation accuracy is not high regardless of whether the deep learning network or the machine learning network is used. When the temperature information extracted by the prior knowledge is input, the average error of IndRNN model is only 2.53%, less than those of BPNN model and traditional RNN. Combining knowledge with deep learning is undoubtedly the best modeling scheme. The deep learning model can provide a comparison value of bridge deformation for bridge management.


2020 ◽  
Vol 10 (11) ◽  
pp. 4016 ◽  
Author(s):  
Xudong Hu ◽  
Han Zhang ◽  
Hongbo Mei ◽  
Dunhui Xiao ◽  
Yuanyuan Li ◽  
...  

Landslide susceptibility mapping is considered to be a prerequisite for landslide prevention and mitigation. However, delineating the spatial occurrence pattern of the landslide remains a challenge. This study investigates the potential application of the stacking ensemble learning technique for landslide susceptibility assessment. In particular, support vector machine (SVM), artificial neural network (ANN), logical regression (LR), and naive Bayes (NB) were selected as base learners for the stacking ensemble method. The resampling scheme and Pearson’s correlation analysis were jointly used to evaluate the importance level of these base learners. A total of 388 landslides and 12 conditioning factors in the Lushui area (Southwest China) were used as the dataset to develop landslide modeling. The landslides were randomly separated into two parts, with 70% used for model training and 30% used for model validation. The models’ performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) and statistical measures. The results showed that the stacking-based ensemble model achieved an improved predictive accuracy as compared to the single algorithms, while the SVM-ANN-NB-LR (SANL) model, the SVM-ANN-NB (SAN) model, and the ANN-NB-LR (ANL) models performed equally well, with AUC values of 0.931, 0.940, and 0.932, respectively, for validation stage. The correlation coefficient between the LR and SVM was the highest for all resampling rounds, with a value of 0.72 on average. This connotes that LR and SVM played an almost equal role when the ensemble of SANL was applied for landslide susceptibility analysis. Therefore, it is feasible to use the SAN model or the ANL model for the study area. The finding from this study suggests that the stacking ensemble machine learning method is promising for landslide susceptibility mapping in the Lushui area and is capable of targeting areas prone to landslides.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2012
Author(s):  
Jiameng Gao ◽  
Chengzhong Liu ◽  
Junying Han ◽  
Qinglin Lu ◽  
Hengxing Wang ◽  
...  

Wheat is a very important food crop for mankind. Many new varieties are bred every year. The accurate judgment of wheat varieties can promote the development of the wheat industry and the protection of breeding property rights. Although gene analysis technology can be used to accurately determine wheat varieties, it is costly, time-consuming, and inconvenient. Traditional machine learning methods can significantly reduce the cost and time of wheat cultivars identification, but the accuracy is not high. In recent years, the relatively popular deep learning methods have further improved the accuracy on the basis of traditional machine learning, whereas it is quite difficult to continue to improve the identification accuracy after the convergence of the deep learning model. Based on the ResNet and SENet models, this paper draws on the idea of the bagging-based ensemble estimator algorithm, and proposes a deep learning model for wheat classification, CMPNet, which is coupled with the tillering period, flowering period, and seed image. This convolutional neural network (CNN) model has a symmetrical structure along the direction of the tensor flow. The model uses collected images of different types of wheat in multiple growth periods. First, it uses the transfer learning method of the ResNet-50, SE-ResNet, and SE-ResNeXt models, and then trains the collected images of 30 kinds of wheat in different growth periods. It then uses the concat layer to connect the output layers of the three models, and finally obtains the wheat classification results through the softmax function. The accuracy of wheat variety identification increased from 92.07% at the seed stage, 95.16% at the tillering stage, and 97.38% at the flowering stage to 99.51%. The model’s single inference time was only 0.0212 s. The model not only significantly improves the classification accuracy of wheat varieties, but also achieves low cost and high efficiency, which makes it a novel and important technology reference for wheat producers, managers, and law enforcement supervisors in the practice of wheat production.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1570
Author(s):  
Sakorn Mekruksavanich ◽  
Anuchit Jitpattanakul ◽  
Phichai Youplao ◽  
Preecha Yupapin

The creation of the Internet of Things (IoT), along with the latest developments in wearable technology, has provided new opportunities in human activity recognition (HAR). The modern smartwatch offers the potential for data from sensors to be relayed to novel IoT platforms, which allow the constant tracking and monitoring of human movement and behavior. Recently, traditional activity recognition techniques have done research in advance by choosing machine learning methods such as artificial neural network, decision tree, support vector machine, and naive Bayes. Nonetheless, these conventional machine learning techniques depend inevitably on heuristically handcrafted feature extraction, in which human domain knowledge is normally limited. This work proposes a hybrid deep learning model called CNN-LSTM that employed Long Short-Term Memory (LSTM) networks for activity recognition with the Convolution Neural Network (CNN). The study makes use of HAR involving smartwatches to categorize hand movements. Using the study based on the Wireless Sensor Data Mining (WISDM) public benchmark dataset, the recognition abilities of the deep learning model can be accessed. The accuracy, precision, recall, and F-measure statistics are employed using the evaluation metrics to assess the recognition abilities of LSTM models proposed. The findings indicate that this hybrid deep learning model offers better performance than its rivals, where the achievement of 96.2% accuracy, while the f-measure is 96.3%, is obtained. The results show that the proposed CNN-LSTM can support an improvement of the performance of activity recognition.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Trinh Quoc Ngo ◽  
Nguyen Duc Dam ◽  
Nadhir Al-Ansari ◽  
Mahdis Amiri ◽  
Tran Van Phong ◽  
...  

Landslides are one of the most devastating natural hazards causing huge loss of life and damage to properties and infrastructures and adversely affecting the socioeconomy of the country. Landslides occur in hilly and mountainous areas all over the world. Single, ensemble, and hybrid machine learning (ML) models have been used in landslide studies for better landslide susceptibility mapping and risk management. In the present study, we have used three single ML models, namely, linear discriminant analysis (LDA), logistic regression (LR), and radial basis function network (RBFN), for landslide susceptibility mapping at Pithoragarh district, as these models are easy to apply and so far they have not been used for landslide study in this area. The main objective of this study is to evaluate the performance of these single models for correctly identifying landslide susceptible zones for their further application in other areas. For this, ten important landslide affecting factors, namely, slope, aspect, curvature, elevation, land cover, lithology, geomorphology, distance to rivers, distance to roads, and overburden depth based on the local geoenvironmental conditions, were considered for the modeling. Landslide inventory of past 398 landslide events was used in the development of models. The data of past landslide events (locations) was randomly divided into a 70/30 ratio for training (70%) and validation (30%) of the models. Standard statistical measures, namely, accuracy (ACC), specificity (SPF), sensitivity (SST), positive predictive value (PPV), negative predictive value (NPV), Kappa, root mean square error (RMSE), and area under the receiver operating characteristic curve (AUC), were used to evaluate the performance of the models. Results indicated that the performance of all the models is very good (AUC > 0.90) and that of the LR model is the best (AUC = 0.926). Therefore, these single ML models can be used for the development of accurate landslide susceptibility maps. Our study demonstrated that the single models which are easy to use and can compete with the complex ensemble/hybrid models can be applied for landslide susceptibility mapping in landslide-prone areas.


2021 ◽  
Vol 13 (23) ◽  
pp. 4776
Author(s):  
Taskin Kavzoglu ◽  
Alihan Teke ◽  
Elif Ozlem Yilmaz

Natural disaster impact assessment is of the utmost significance for post-disaster recovery, environmental protection, and hazard mitigation plans. With their recent usage in landslide susceptibility mapping, deep learning (DL) architectures have proven their efficiency in many scientific studies. However, some restrictions, including insufficient model variance and limited generalization capabilities, have been reported in the literature. To overcome these restrictions, ensembling DL models has often been preferred as a practical solution. In this study, an ensemble DL architecture, based on shared blocks, was proposed to improve the prediction capability of individual DL models. For this purpose, three DL models, namely Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM), together with their ensemble form (CNN–RNN–LSTM) were utilized to model landslide susceptibility in Trabzon province, Turkey. The proposed DL architecture produced the highest modeling performance of 0.93, followed by CNN (0.92), RNN (0.91), and LSTM (0.86). Findings proved that the proposed model excelled the performance of the DL models by up to 7% in terms of overall accuracy, which was also confirmed by the Wilcoxon signed-rank test. The area under curve analysis also showed a significant improvement (~4%) in susceptibility map accuracy by the proposed strategy.


2021 ◽  
pp. 1-35
Author(s):  
Alireza Arabameri ◽  
Subodh Chandra Pal ◽  
Fatemeh Rezaie ◽  
Rabin Chakrabortty ◽  
Asish Saha ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 989
Author(s):  
Minu Treesa Abraham ◽  
Neelima Satyam ◽  
Revuri Lokesh ◽  
Biswajeet Pradhan ◽  
Abdullah Alamri

Data driven methods are widely used for the development of Landslide Susceptibility Mapping (LSM). The results of these methods are sensitive to different factors, such as the quality of input data, choice of algorithm, sampling strategies, and data splitting ratios. In this study, five different Machine Learning (ML) algorithms are used for LSM for the Wayanad district in Kerala, India, using two different sampling strategies and nine different train to test ratios in cross validation. The results show that Random Forest (RF), K Nearest Neighbors (KNN), and Support Vector Machine (SVM) algorithms provide better results than Naïve Bayes (NB) and Logistic Regression (LR) for the study area. NB and LR algorithms are less sensitive to the sampling strategy and data splitting, while the performance of the other three algorithms is considerably influenced by the sampling strategy. From the results, both the choice of algorithm and sampling strategy are critical in obtaining the best suited landslide susceptibility map for a region. The accuracies of KNN, RF, and SVM algorithms have increased by 10.51%, 10.02%, and 4.98% with the use of polygon landslide inventory data, while for NB and LR algorithms, the performance was slightly reduced with the use of polygon data. Thus, the sampling strategy and data splitting ratio are less consequential with NB and algorithms, while more data points provide better results for KNN, RF, and SVM algorithms.


Sign in / Sign up

Export Citation Format

Share Document