scholarly journals Enhanced Hand-Oriented Activity Recognition Based on Smartwatch Sensor Data Using LSTMs

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1570
Author(s):  
Sakorn Mekruksavanich ◽  
Anuchit Jitpattanakul ◽  
Phichai Youplao ◽  
Preecha Yupapin

The creation of the Internet of Things (IoT), along with the latest developments in wearable technology, has provided new opportunities in human activity recognition (HAR). The modern smartwatch offers the potential for data from sensors to be relayed to novel IoT platforms, which allow the constant tracking and monitoring of human movement and behavior. Recently, traditional activity recognition techniques have done research in advance by choosing machine learning methods such as artificial neural network, decision tree, support vector machine, and naive Bayes. Nonetheless, these conventional machine learning techniques depend inevitably on heuristically handcrafted feature extraction, in which human domain knowledge is normally limited. This work proposes a hybrid deep learning model called CNN-LSTM that employed Long Short-Term Memory (LSTM) networks for activity recognition with the Convolution Neural Network (CNN). The study makes use of HAR involving smartwatches to categorize hand movements. Using the study based on the Wireless Sensor Data Mining (WISDM) public benchmark dataset, the recognition abilities of the deep learning model can be accessed. The accuracy, precision, recall, and F-measure statistics are employed using the evaluation metrics to assess the recognition abilities of LSTM models proposed. The findings indicate that this hybrid deep learning model offers better performance than its rivals, where the achievement of 96.2% accuracy, while the f-measure is 96.3%, is obtained. The results show that the proposed CNN-LSTM can support an improvement of the performance of activity recognition.

2021 ◽  
Vol 11 (4) ◽  
pp. 286-290
Author(s):  
Md. Golam Kibria ◽  
◽  
Mehmet Sevkli

The increased credit card defaulters have forced the companies to think carefully before the approval of credit applications. Credit card companies usually use their judgment to determine whether a credit card should be issued to the customer satisfying certain criteria. Some machine learning algorithms have also been used to support the decision. The main objective of this paper is to build a deep learning model based on the UCI (University of California, Irvine) data sets, which can support the credit card approval decision. Secondly, the performance of the built model is compared with the other two traditional machine learning algorithms: logistic regression (LR) and support vector machine (SVM). Our results show that the overall performance of our deep learning model is slightly better than that of the other two models.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Zhiyuan Xie ◽  
Shichang Du ◽  
Jun Lv ◽  
Yafei Deng ◽  
Shiyao Jia

Remaining Useful Life (RUL) prediction is significant in indicating the health status of the sophisticated equipment, and it requires historical data because of its complexity. The number and complexity of such environmental parameters as vibration and temperature can cause non-linear states of data, making prediction tremendously difficult. Conventional machine learning models such as support vector machine (SVM), random forest, and back propagation neural network (BPNN), however, have limited capacity to predict accurately. In this paper, a two-phase deep-learning-model attention-convolutional forget-gate recurrent network (AM-ConvFGRNET) for RUL prediction is proposed. The first phase, forget-gate convolutional recurrent network (ConvFGRNET) is proposed based on a one-dimensional analog long short-term memory (LSTM), which removes all the gates except the forget gate and uses chrono-initialized biases. The second phase is the attention mechanism, which ensures the model to extract more specific features for generating an output, compensating the drawbacks of the FGRNET that it is a black box model and improving the interpretability. The performance and effectiveness of AM-ConvFGRNET for RUL prediction is validated by comparing it with other machine learning methods and deep learning methods on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset and a dataset of ball screw experiment.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2293
Author(s):  
Zixiang Yue ◽  
Youliang Ding ◽  
Hanwei Zhao ◽  
Zhiwen Wang

A cable-stayed bridge is a typical symmetrical structure, and symmetry affects the deformation characteristics of such bridges. The main girder of a cable-stayed bridge will produce obvious deflection under the inducement of temperature. The regression model of temperature-induced deflection is hoped to provide a comparison value for bridge evaluation. Based on the temperature and deflection data obtained by the health monitoring system of a bridge, establishing the correlation model between temperature and temperature-induced deflection is meaningful. It is difficult to complete a high-quality model only by the girder temperature. The temperature features based on prior knowledge from the mechanical mechanism are used as the input information in this paper. At the same time, to strengthen the nonlinear ability of the model, this paper selects an independent recurrent neural network (IndRNN) for modeling. The deep learning neural network is compared with machine learning neural networks to prove the advancement of deep learning. When only the average temperature of the main girder is input, the calculation accuracy is not high regardless of whether the deep learning network or the machine learning network is used. When the temperature information extracted by the prior knowledge is input, the average error of IndRNN model is only 2.53%, less than those of BPNN model and traditional RNN. Combining knowledge with deep learning is undoubtedly the best modeling scheme. The deep learning model can provide a comparison value of bridge deformation for bridge management.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2664
Author(s):  
Sunil Saha ◽  
Jagabandhu Roy ◽  
Tusar Kanti Hembram ◽  
Biswajeet Pradhan ◽  
Abhirup Dikshit ◽  
...  

The efficiency of deep learning and tree-based machine learning approaches has gained immense popularity in various fields. One deep learning model viz. convolution neural network (CNN), artificial neural network (ANN) and four tree-based machine learning models, namely, alternative decision tree (ADTree), classification and regression tree (CART), functional tree and logistic model tree (LMT), were used for landslide susceptibility mapping in the East Sikkim Himalaya region of India, and the results were compared. Landslide areas were delimited and mapped as landslide inventory (LIM) after gathering information from historical records and periodic field investigations. In LIM, 91 landslides were plotted and classified into training (64 landslides) and testing (27 landslides) subsets randomly to train and validate the models. A total of 21 landslide conditioning factors (LCFs) were considered as model inputs, and the results of each model were categorised under five susceptibility classes. The receiver operating characteristics curve and 21 statistical measures were used to evaluate and prioritise the models. The CNN deep learning model achieved the priority rank 1 with area under the curve of 0.918 and 0.933 by using the training and testing data, quantifying 23.02% and 14.40% area as very high and highly susceptible followed by ANN, ADtree, CART, FTree and LMT models. This research might be useful in landslide studies, especially in locations with comparable geophysical and climatological characteristics, to aid in decision making for land use planning.


2020 ◽  
Vol 17 (4) ◽  
pp. 1925-1930
Author(s):  
Ambeshwar Kumar ◽  
R. Manikandan ◽  
Robbi Rahim

It’s a new era technology in the field of medical engineering giving awareness about the various healthcare features. Deep learning is a part of machine learning, it is capable of handling high dimensional data and is efficient in concentrating on the right features. Tumor is an unbelievably complex disease: a multifaceted cell has more than hundred billion cells; each cell acquires mutation exclusively. Detection of tumor particles in experiment is easily done by MRI or CT. Brain tumors can also be detected by MRI, however, deep learning techniques give a better approach to segment the brain tumor images. Deep Learning models are imprecisely encouraged by information handling and communication designs in biological nervous system. Classification plays an significant role in brain tumor detection. Neural network is creating a well-organized rule for classification. To accomplish medical image data, neural network is trained to use the Convolution algorithm. Multilayer perceptron is intended for identification of a image. In this study article, the brain images are categorized into two types: normal and abnormal. This article emphasize the importance of classification and feature selection approach for predicting the brain tumor. This classification is done by machine learning techniques like Artificial Neural Networks, Support Vector Machine and Deep Neural Network. It could be noted that more than one technique can be applied for the segmentation of tumor. The several samples of brain tumor images are classified using deep learning algorithms, convolution neural network and multi-layer perceptron.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Renzhou Gui ◽  
Tongjie Chen ◽  
Han Nie

With the continuous development of science, more and more research results have proved that machine learning is capable of diagnosing and studying the major depressive disorder (MDD) in the brain. We propose a deep learning network with multibranch and local residual feedback, for four different types of functional magnetic resonance imaging (fMRI) data produced by depressed patients and control people under the condition of listening to positive- and negative-emotions music. We use the large convolution kernel of the same size as the correlation matrix to match the features and obtain the results of feature matching of 264 regions of interest (ROIs). Firstly, four-dimensional fMRI data are used to generate the two-dimensional correlation matrix of one person’s brain based on ROIs and then processed by the threshold value which is selected according to the characteristics of complex network and small-world network. After that, the deep learning model in this paper is compared with support vector machine (SVM), logistic regression (LR), k-nearest neighbor (kNN), a common deep neural network (DNN), and a deep convolutional neural network (CNN) for classification. Finally, we further calculate the matched ROIs from the intermediate results of our deep learning model which can help related fields further explore the pathogeny of depression patients.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3363 ◽  
Author(s):  
Taylor Mauldin ◽  
Marc Canby ◽  
Vangelis Metsis ◽  
Anne Ngu ◽  
Coralys Rivera

This paper presents SmartFall, an Android app that uses accelerometer data collected from a commodity-based smartwatch Internet of Things (IoT) device to detect falls. The smartwatch is paired with a smartphone that runs the SmartFall application, which performs the computation necessary for the prediction of falls in real time without incurring latency in communicating with a cloud server, while also preserving data privacy. We experimented with both traditional (Support Vector Machine and Naive Bayes) and non-traditional (Deep Learning) machine learning algorithms for the creation of fall detection models using three different fall datasets (Smartwatch, Notch, Farseeing). Our results show that a Deep Learning model for fall detection generally outperforms more traditional models across the three datasets. This is attributed to the Deep Learning model’s ability to automatically learn subtle features from the raw accelerometer data that are not available to Naive Bayes and Support Vector Machine, which are restricted to learning from a small set of extracted features manually specified. Furthermore, the Deep Learning model exhibits a better ability to generalize to new users when predicting falls, an important quality of any model that is to be successful in the real world. We also present a three-layer open IoT system architecture used in SmartFall, which can be easily adapted for the collection and analysis of other sensor data modalities (e.g., heart rate, skin temperature, walking patterns) that enables remote monitoring of a subject’s wellbeing.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2012
Author(s):  
Jiameng Gao ◽  
Chengzhong Liu ◽  
Junying Han ◽  
Qinglin Lu ◽  
Hengxing Wang ◽  
...  

Wheat is a very important food crop for mankind. Many new varieties are bred every year. The accurate judgment of wheat varieties can promote the development of the wheat industry and the protection of breeding property rights. Although gene analysis technology can be used to accurately determine wheat varieties, it is costly, time-consuming, and inconvenient. Traditional machine learning methods can significantly reduce the cost and time of wheat cultivars identification, but the accuracy is not high. In recent years, the relatively popular deep learning methods have further improved the accuracy on the basis of traditional machine learning, whereas it is quite difficult to continue to improve the identification accuracy after the convergence of the deep learning model. Based on the ResNet and SENet models, this paper draws on the idea of the bagging-based ensemble estimator algorithm, and proposes a deep learning model for wheat classification, CMPNet, which is coupled with the tillering period, flowering period, and seed image. This convolutional neural network (CNN) model has a symmetrical structure along the direction of the tensor flow. The model uses collected images of different types of wheat in multiple growth periods. First, it uses the transfer learning method of the ResNet-50, SE-ResNet, and SE-ResNeXt models, and then trains the collected images of 30 kinds of wheat in different growth periods. It then uses the concat layer to connect the output layers of the three models, and finally obtains the wheat classification results through the softmax function. The accuracy of wheat variety identification increased from 92.07% at the seed stage, 95.16% at the tillering stage, and 97.38% at the flowering stage to 99.51%. The model’s single inference time was only 0.0212 s. The model not only significantly improves the classification accuracy of wheat varieties, but also achieves low cost and high efficiency, which makes it a novel and important technology reference for wheat producers, managers, and law enforcement supervisors in the practice of wheat production.


Author(s):  
P. Nagaraj ◽  
P. Deepalakshmi

Diabetes, caused by the rise in level of glucose in blood, has many latest devices to identify from blood samples. Diabetes, when unnoticed, may bring many serious diseases like heart attack, kidney disease. In this way, there is a requirement for solid research and learning model’s enhancement in the field of gestational diabetes identification and analysis. SVM is one of the powerful classification models in machine learning, and similarly, Deep Neural Network is powerful under deep learning models. In this work, we applied Enhanced Support Vector Machine and Deep Learning model Deep Neural Network for diabetes prediction and screening. The proposed method uses Deep Neural Network obtaining its input from the output of Enhanced Support Vector Machine, thus having a combined efficacy. The dataset we considered includes 768 patients’ data with eight major features and a target column with result “Positive” or “Negative”. Experiment is done with Python and the outcome of our demonstration shows that the deep Learning model gives more efficiency for diabetes prediction.


2019 ◽  
Vol 11 (4) ◽  
pp. 1766-1783 ◽  
Author(s):  
Suresh Sankaranarayanan ◽  
Malavika Prabhakar ◽  
Sreesta Satish ◽  
Prerna Jain ◽  
Anjali Ramprasad ◽  
...  

Abstract Today, India is one of the worst flood-affected countries in the world, with the recent disaster in Kerala in August 2018 being a prime example. A good amount of work has been carried out by employing Internet of Things (IoT) and machine learning (ML) techniques in the past for flood occurrence based on rainfall, humidity, temperature, water flow, water level etc. However, the challenge is that no one has attempted the possibility of occurrence of flood based on temperature and rainfall intensity. So accordingly Deep Neural Network has been employed for predicting the occurrence of flood based on temperature and rainfall intensity. In addition, a deep learning model is compared with other machine learning models (support vector machine (SVM), K-nearest neighbor (KNN) and Naïve Bayes) in terms of accuracy and error. The results indicate that the deep neural network can be efficiently used for flood forecasting with highest accuracy based on monsoon parameters only before flood occurrence.


Sign in / Sign up

Export Citation Format

Share Document