scholarly journals Modelling the Influence from Biota and Organic Matter on the Transport Dynamics of Microplastics in the Water Column and Bottom Sediments in the Oslo Fjord

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2690
Author(s):  
Anfisa Berezina ◽  
Evgeniy Yakushev ◽  
Oleg Savchuk ◽  
Christian Vogelsang ◽  
André Staalstrom

The fate of microplastics (MP) in seawater is heavily influenced by the biota: the density of MP particles can be changed due to biofouling, which affects sinking, or MP can be digested by zooplankton and transferred into fecal pellets with increased sinking rate. We hypothesize that seasonal production and degradation of organic matter, and corresponding changes in the plankton ecosystem affect the MP capacity for transportation and burying in sediments in different seasons. This is simulated with a coupled hydrodynamical-biogeochemical model that provides a baseline scenario of the seasonal changes in the planktonic ecosystem and changes in the availability of particulate and dissolved organic matter. In this work, we use a biogeochemical model OxyDep that simulates seasonal changes of phytoplankton (PHY), zooplankton (HET), dissolved organic matter (DOM) and detritus (POM). A specifically designed MP module considers MP particles as free particles (MPfree), particles with biofouling (MPbiof), particles consumed by zooplankton (MPhet) and particles in detritus, including fecal pellets (MPdet). A 2D coupled benthic-pelagic vertical transport model 2DBP was applied to study the effect of seasonality on lateral transport of MP and its burying in the sediments. OxyDep and MP modules were coupled with 2DBP using Framework for Aquatic Biogeochemical Modelling (FABM). A depletion of MP from the surface water and acceleration of MP burying in summer period compared to the winter was simulated numerically. The calculations confirm the observations that the “biological pump” can be one of the important drivers controlling the quantity and the distribution of MP in the water column.

Ocean Science ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 1071-1090 ◽  
Author(s):  
Sinikka T. Lennartz ◽  
Marc von Hobe ◽  
Dennis Booge ◽  
Henry C. Bittig ◽  
Tim Fischer ◽  
...  

Abstract. Oceanic emissions of the climate-relevant trace gases carbonyl sulfide (OCS) and carbon disulfide (CS2) are a major source to their atmospheric budget. Their current and future emission estimates are still uncertain due to incomplete process understanding and therefore inexact quantification across different biogeochemical regimes. Here we present the first concurrent measurements of both gases together with related fractions of the dissolved organic matter (DOM) pool, i.e., solid-phase extractable dissolved organic sulfur (DOSSPE, n=24, 0.16±0.04 µmol L−1), chromophoric (CDOM, n=76, 0.152±0.03), and fluorescent dissolved organic matter (FDOM, n=35), from the Peruvian upwelling region (Guayaquil, Ecuador to Antofagasta, Chile, October 2015). OCS was measured continuously with an equilibrator connected to an off-axis integrated cavity output spectrometer at the surface (29.8±19.8 pmol L−1) and at four profiles ranging down to 136 m. CS2 was measured at the surface (n=143, 17.8±9.0 pmol L−1) and below, ranging down to 1000 m (24 profiles). These observations were used to estimate in situ production rates and identify their drivers. We find different limiting factors of marine photoproduction: while OCS production is limited by the humic-like DOM fraction that can act as a photosensitizer, high CS2 production coincides with high DOSSPE concentration. Quantifying OCS photoproduction using a specific humic-like FDOM component as proxy, together with an updated parameterization for dark production, improves agreement with observations in a 1-D biogeochemical model. Our results will help to better predict oceanic concentrations and emissions of both gases on regional and, potentially, global scales.


2020 ◽  
Vol 44 (1) ◽  
pp. 103-122
Author(s):  
Julia M. Moriarty ◽  
Marjorie A. M. Friedrichs ◽  
Courtney K. Harris

AbstractSediment processes, including resuspension and transport, affect water quality in estuaries by altering light attenuation, primary productivity, and organic matter remineralization, which then influence oxygen and nitrogen dynamics. The relative importance of these processes on oxygen and nitrogen dynamics varies in space and time due to multiple factors and is difficult to measure, however, motivating a modeling approach to quantify how sediment resuspension and transport affect estuarine biogeochemistry. Results from a coupled hydrodynamic–sediment transport–biogeochemical model of the Chesapeake Bay for the summers of 2002 and 2003 showed that resuspension increased light attenuation, especially in the northernmost portion of the Bay, shifting primary production downstream. Resuspension also increased remineralization in the central Bay, which experienced larger organic matter concentrations due to the downstream shift in primary productivity and estuarine circulation. As a result, oxygen decreased and ammonium increased throughout the Bay in the bottom portion of the water column, due to reduced photosynthesis in the northernmost portion of the Bay and increased remineralization in the central Bay. Averaged over the channel, resuspension decreased oxygen by ~ 25% and increased ammonium by ~ 50% for the bottom water column. Changes due to resuspension were of the same order of magnitude as, and generally exceeded, short-term variations within individual summers, as well as interannual variability between 2002 and 2003, which were wet and dry years, respectively. Our results quantify the degree to which sediment resuspension and transport affect biogeochemistry, and provide insight into how coastal systems may respond to management efforts and environmental changes.


2015 ◽  
Vol 82 (5) ◽  
pp. 1423-1432 ◽  
Author(s):  
Vincent J. Denef ◽  
Ryan S. Mueller ◽  
Edna Chiang ◽  
James R. Liebig ◽  
Henry A. Vanderploeg

ABSTRACTTheChloroflexiCL500-11 clade contributes a large proportion of the bacterial biomass in the oxygenated hypolimnia of deep lakes worldwide, including the world's largest freshwater system, the Laurentian Great Lakes. Traits that allow CL500-11 to thrive and its biogeochemical role in these environments are currently unknown. Here, we found that a CL500-11 population was present mostly in offshore waters along a transect in ultraoligotrophic Lake Michigan (a Laurentian Great Lake). It occurred throughout the water column in spring and only in the hypolimnion during summer stratification, contributing up to 18.1% of all cells. Genome reconstruction from metagenomic data suggested an aerobic, motile, heterotrophic lifestyle, with additional energy being gained through carboxidovory and methylovory. Comparisons to other available streamlined freshwater genomes revealed that the CL500-11 genome contained a disproportionate number of cell wall/capsule biosynthesis genes and the most diverse spectrum of genes involved in the uptake of dissolved organic matter (DOM) substrates, particularly peptides.In situexpression patterns indicated the importance of DOM uptake and protein/peptide turnover, as well as type I and type II carbon monoxide dehydrogenase and flagellar motility. Its location in the water column influenced its gene expression patterns the most. We observed increased bacteriorhodopsin gene expression and a response to oxidative stress in surface waters compared to its response in deep waters. While CL500-11 carries multiple adaptations to an oligotrophic lifestyle, its investment in motility, its large cell size, and its distribution in both oligotrophic and mesotrophic lakes indicate its ability to thrive under conditions where resources are more plentiful. Our data indicate that CL500-11 plays an important role in nitrogen-rich DOM mineralization in the extensive deep-lake hypolimnion habitat.


2009 ◽  
Vol 114 (3-4) ◽  
pp. 110-119 ◽  
Author(s):  
Yoann Louis ◽  
Cédric Garnier ◽  
Véronique Lenoble ◽  
Stéphane Mounier ◽  
Neven Cukrov ◽  
...  

2013 ◽  
Vol 10 (11) ◽  
pp. 6945-6956 ◽  
Author(s):  
M. Gonsior ◽  
P. Schmitt-Kopplin ◽  
D. Bastviken

Abstract. Transformations of dissolved organic matter (DOM) in boreal lakes lead to large greenhouse gas emissions as well as substantial carbon storage in sediments. Using novel molecular characterization approaches and photochemical degradation experiments we studied how seasonal patterns in water column stratification affected the DOM in a Swedish lake under early spring and summer conditions. Dissolved organic carbon (DOC) concentrations were consistently higher above the sediment when compared to surface waters throughout the sampling periods. Photobleaching alone could not explain this difference in DOC because the lake was covered by 40 cm-thick ice during late winter sampling and still showed the same DOC trend. The differences in the molecular diversity between surface DOM in winter and summer were consistent with ongoing photobleaching/decarboxylation and a possible bacterial consumption of photo-products. Additional photo-degradation experiments using simulated sunlight showed a production of highly oxidized organic molecules and low molecular weight compounds in all late winter samples and also in the deep water sample in summer. In the surface summer DOM sample, few such molecules were produced during the photo-degradation experiments, confirming that DOM was already photobleached prior to the experiments. This study suggests that photobleaching, and therefore also the ice cover during winter, plays a central role in surface DOM transformation, with important differences in the molecular composition of DOM between surface and deep boreal lake waters. The release of DOC from boreal lake sediments also contribute to this pattern. Photochemical degradation of DOM may be more extensive following ice-out and water column turnover when non-light exposed and thereby photosensitive DOM is photo-mineralized. Hence, the yearly DOM photo-mineralization may be greater than inferred from studies of recently light-exposed DOM.


1998 ◽  
Vol 32 (9) ◽  
pp. 2714-2720 ◽  
Author(s):  
Juan M Antelo ◽  
Florencio Arce ◽  
Francisco J Penedo

1984 ◽  
Vol 29 (5) ◽  
pp. 1127-1132 ◽  
Author(s):  
Mohideen Wafar ◽  
Pierre Le Corre ◽  
Jean-Louis Birrien

Sign in / Sign up

Export Citation Format

Share Document