scholarly journals Modelling and Incorporating the Variable Demand Patterns to the Calibration of Water Distribution System Hydraulic Model

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2890
Author(s):  
Sharif Hossain ◽  
Guna A. Hewa ◽  
Christopher W. K. Chow ◽  
David Cook

Calibration of a water distribution system (WDS) hydraulic model requires adjusting several parameters including hourly or sub-hourly demand multipliers, pipe roughness and settings of various hydraulic components. The water usage patterns or demand patterns in a 24-h cycle varies with the customer types and can be related to many factors including spatial and temporal factors. The demand patterns can also vary on a daily basis. For an extended period of hydraulic simulation, the modelling tools allows modelling of the variable demand patterns using daily multiplication factors. In this study, a linear modelling approach was used to handle the variable demand patterns. The parameters of the linear model allow modelling of the variable demand patterns with respect to the baseline values, and they were optimised to maximise the association with the observed data. This procedure was applied to calibrate the hydraulic model developed in EPANET of a large drinking water distribution system in regional South Australia. Local and global optimisation techniques were used to find the optimal values of the linear modelling parameters. The result suggests that the approach has the potential to model the variable demand patterns in a WDS hydraulic model and it improves the objective function of calibration.

2013 ◽  
Vol 15 (3) ◽  
pp. 862-880 ◽  
Author(s):  
M. Ehsan Shafiee ◽  
Emily M. Zechman

In the event that a contaminant is introduced to a water distribution network, a large population of consumers may risk exposure. Selecting mitigation actions to protect public health may be difficult, as contamination is a poorly predictable dynamic event. Consumers who become aware of an event may select protective actions to change their water demands from typical demand patterns, and new hydraulic conditions can arise that differ from conditions that would be predicted when demands are considered as exogenous inputs. Consequently, the movement of the contaminant plume in the pipe network may shift from its expected trajectory. A sociotechnical model is developed here to integrate agent-based models of consumers with an engineering water distribution system model and capture the dynamics between consumer behaviors and the water distribution system for predicting contaminant transport and public exposure. Consumers are simulated as agents with behaviors, including movement, water consumption, exposure, reduction in demands, and communication with other agents. As consumers decrease their water use, the location of the contaminant plume is updated and the amount of contaminant consumed by each agent is calculated. The framework is tested through simulating realistic contamination scenarios for a virtual city and water distribution system.


The study presents the hydraulic design and analysis of Rural Water Distribution System (WDS) for Nava shihora region of zone 1 of the state of Gujarat, India. Water supply distribution system is designed for this study for population estimated for future 30 years. LOOP 4.0 and Water Gems v8i software have been used and the results are compared to determine the economical size of pipes for water distribution system. The economical size of pipes of water supply distribution system is designed by considering the constraints; residual pressure at each node, velocity of flow in pipe, head loos in pipes, material of pipes, elevated service reservoir level, peak factor and available commercial pipe diameters. Further water distribution system has been analyzed for extended period simulation (EPS) for the present population scenario for intermittent water supply using Water Gems v8i. Further water supply system is analyzed the residual chlorine concentration at nodes and in the pipe links and also the total cost of water supply system of rural region is estimated.


2010 ◽  
Vol 3 (1) ◽  
pp. 43-51 ◽  
Author(s):  
E. J. M. Blokker ◽  
J. H. G. Vreeburg ◽  
H. Beverloo ◽  
M. Klein Arfman ◽  
J. C. van Dijk

Abstract. An "all pipes" hydraulic model of a drinking water distribution system was constructed with two types of demand allocations. One is constructed with the conventional top-down approach, i.e. a demand multiplier pattern from the booster station is allocated to all demand nodes with a correction factor to account for the average water demand on that node. The other is constructed with a bottom-up approach of demand allocation, i.e., each individual home is represented by one demand node with its own stochastic water demand pattern. This was done for a drinking water distribution system of approximately 10 km of mains and serving ca. 1000 homes. The system was tested in a real life situation. The stochastic water demand patterns were constructed with the end-use model SIMDEUM on a per second basis and per individual home. Before applying the demand patterns in a network model, some temporal aggregation was done. The flow entering the test area was measured and a tracer test with sodium chloride was performed to determine travel times. The two models were validated on the total sum of demands and on travel times. The study showed that the bottom-up approach leads to realistic water demand patterns and travel times, without the need for any flow measurements or calibration. In the periphery of the drinking water distribution system it is not possible to calibrate models on pressure, because head losses are too low. The study shows that in the periphery it is also difficult to calibrate on water quality (e.g. with tracer measurements), as a consequence of the high variability between days. The stochastic approach of hydraulic modelling gives insight into the variability of travel times as an added feature beyond the conventional way of modelling.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 567 ◽  
Author(s):  
Kegong Diao ◽  
Robert Sitzenfrei ◽  
Wolfgang Rauch

Resilient water distribution systems (WDSs) need to minimize the level of service failure in terms of magnitude and duration over its design life when subject to exceptional conditions. This requires WDS design to consider scenarios as close as possible to real conditions of the WDS to avoid any unexpected level of service failure in future operation (e.g., insufficient pressure, much higher operational cost, water quality issues, etc.). Thus, this research aims at exploring the impacts of design flow scenarios (i.e., spatial-variant demand patterns) on water distribution system design and operation. WDSs are traditionally designed by using a uniform demand pattern for the whole system. Nevertheless, in reality, the patterns are highly related to the number of consumers, service areas, and the duration of peak flows. Thus, water distribution systems are comprised of distribution blocks (communities) organized in a hierarchical structure. As each community may be significantly different from the others in scale and water use, the WDSs have spatially variable demand patterns. Hence, there might be considerable variability of real flow patterns for different parts of the system. Consequently, the system operation might not reach the expected performance determined during the design stage, since all corresponding facilities are commonly tailor-made to serve the design flow scenario instead of the real situation. To quantify the impacts, WDSs’ performances under both uniform and spatial distributed patterns are compared based on case studies. The corresponding impacts on system performances are then quantified based on three major metrics; i.e., capital cost, energy cost, and water quality. This study exemplifies that designing a WDS using spatial distributed demand patterns might result in decreased life-cycle cost (i.e., lower capital cost and nearly the same pump operating cost) and longer water ages. The outcomes of this study provide valuable information regarding design and operation of water supply infrastructures; e.g., assisting the optimal design.


2019 ◽  
Vol 11 (4) ◽  
pp. 1411-1428 ◽  
Author(s):  
Lakshmi Kanthan Narayanan ◽  
Suresh Sankaranarayanan

Abstract The percentage of fresh water resource availability in the world is diminishing every year. According to a world economic forum survey, the increase in water demand will result in high scarcity globally in the next two decades. The eradication of the water demand increase and reducing the losses during the transportation of water is challenging. Thus accordingly, an Internet of Things (IoT)-based architecture integrated with Fog for underground water distribution system has been proposed. Towards designing an IoT water distribution architecture for a smart city, we need to first forecast the water demand for consumers. Hence, accordingly, water demand forecasting has been carried out on a daily basis for a period of three months as a case study using autoregressive integrated moving average (ARIMA) and regression analysis. Based on water demand forecasting analysis, a water distribution design for an IoT-based architecture has been carried out using hydraulic engineering design for proper distribution of water with minimal losses which would result in the development of a smart water distribution system (SWDS). This has been carried out using EPANET.


2021 ◽  
Author(s):  
Tarekegn Kuma ◽  
Brook Abate Getahun

Abstract Understanding water distribution system hydraulic performance is crucial for a water supply system management. A case study was conducted evaluating the hydraulic performance of water distribution system of Tulu Bolo town. The hydraulic model of water distribution network was developed using GIS integrated with WaterGEMS hydraulic model. The implementation of the integrated system verified that water to regulate the pressure and velocity in order to sustain. According to the analysis, about 92.6% of nodes have optimized pressure ranged between 15m to 70m and about 1.27% is under permissible pressure. Model calibration was performed by comparing simulated data with field data, the result of pressure calibration has a linear correlation coefficient of 0.93 and the hydraulic model in WaterGEMS was calibrated and optimized with a field data.


2021 ◽  
Author(s):  
Dessalegn Geleta Ebsa ◽  
Fekadu Fufa

Abstract. The study evaluates the hydraulic analysis of water supply distribution network using water GEMS v8i. which used for modeling and Simulation of hydraulic parameters in the distribution networks. The hydraulic parameters which analyzed by using this software were junction pressure, velocity of water in networking system, and nodal demands and the overall result of water supply did not satisfied demand. The water distribution system has been analyzed for steady state and extended period simulation for the present population scenario for intermittent water supply using water Gems v8i. About 14 percent of the total number of nodes analyzed had negative pressures while 68 percent of the nodes had pressures less than the adopted pressure for the analysis. These negative pressures indicate that there is inadequate head within the distribution network for water conveyance to all the sections. In the same manner 85.6 percent of flow velocities in the pipes were within the adopted velocity while around 14.4 percent of the velocities exceeded the adopted velocity. The results in this study revealed that the performance of the water distribution system of under current demand is inefficient.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1318 ◽  
Author(s):  
Beatriz Martínez-Bahena ◽  
Marco Cruz-Chávez ◽  
Erika Ávila-Melgar ◽  
Martín Cruz-Rosales ◽  
Rafael Rivera-Lopez

This research proposes a genetic algorithm that provides a solution to the problem of deficient distribution of drinking water via the current hydraulic network in the neighborhood “Fraccionamiento Real Montecasino” (FRM), in Huitzilac, Morelos, Mexico. The proposed solution is the addition of new elements to the FRM network. The new elements include storage tanks, pipes, and pressure-reducing valves. To evaluate the constraint satisfaction model of mass and energy conservation, the hydraulic EPANET solver (HES) is used with an optimization model to minimize the total cost of changes in the network (new pipes, tanks, and valves). A genetic algorithm was used to evaluate the optimization model. The analysis of the results obtained by the genetic algorithm for the FRM network shows that adequate and balanced pressures were obtained by means of small modifications to the existing network, which entailed minimal costs. Simulations were performed for an extended period, which means that the pressure was obtained by simulation with HSE at one-hour intervals, during the algorithm execution, to verify adequate pressure at a specific point in the system, or to make corrections to ensure proper distribution, this with the aim of having a final optimized network design.


Author(s):  
Nur Shazwani Muhammad ◽  
◽  
Siew Ming Shin ◽  
Jazuri Abdullah ◽  
◽  
...  

Chlorine is used as a disinfectant in the water treatment process so that treated water is delivered safely to consumers. However, chlorine concentration decays when water flows from the treatment plant to the supply point, due to the reaction with natural organic matter and the inner surface of the pipe. Low chlorine concentration may encourage bacteria re-growth, while high chlorine concentration can result in the formation of harmful chemical components. Therefore, this study aims to simulate the complex process of chlorine decay using EPANET. This exercise enables the determination the chlorine concentration dosage required to maintain the desired requirement given by the World Health Organization (WHO) and the Ministry of Health, Malaysia (MOH). A successful model with an extended period of simulations of 72 hours enable the mapping of spatial and temporal variations of flow and residue chlorine concentrations at all links and nodes. Constant chlorine dosage of 3.96 mg/l at node R1 has successfully satisfy the requirement given by WHO and MOH. The residue chlorine concentrations at the nodes and links in the water distribution system also depends on the water usage at node 5, the size of service reservoir and service tank and distance from the reservoir.


Sign in / Sign up

Export Citation Format

Share Document