scholarly journals Assessment of Coagulation–Flocculation Process Efficiency for the Natural Organic Matter Removal in Drinking Water Treatment

Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3073
Author(s):  
Corina Petronela Mustereț ◽  
Irina Morosanu ◽  
Ramona Ciobanu ◽  
Oana Plavan ◽  
Andreea Gherghel ◽  
...  

Natural organic matter (NOM) represents a range of heterogeneous hydrophobic and hydrophilic components naturally occurring in the water source and, due to the fact that they can act as precursors for the disinfection, by-products may have a considerable impact on drinking water quality. Coagulation–flocculation (C/F) is among the most applied processes for NOM removal from water sources (especially rivers). In this study, C/F efficiency for a river water supply was investigated in cold and warm conditions, by varying the coagulant dose and mixing conditions. In this study, polyhydroxy aluminum chloride PAX XL 60, and polyacrylamide FloPam AN 910 SEP were used as coagulant and flocculant, respectively. Multiple water quality indicators were determined, such as turbidity, chemical oxygen demand (COD), dissolved organic carbon (DOC), and residual aluminum concentration. Some unconventional parameters relevant for NOM removal were also considered, like absorbance at 254 nm (A254), at 280 nm (A280), and at 365 nm (A365), as well as the ratios A254/DOC, A254/280, and A254/A365. After coagulation–flocculation, turbidity was completely removed in all the studied conditions. The DOC content was reduced by up to 22.65% at a low temperature and by up to 31.81% at a high temperature. After the addition of polyelectrolyte in cold conditions, the efficiency in terms of A254 increased by up to 37.4%, while the specific absorbance decreased. The high molecular weight NOM increased after C/F, based on the A254/A365 ratio. Chemometric analysis was employed in order to determine the effect of the coagulant dose on the process efficiency. The optimum coagulation–flocculation conditions were corroborated by means of the principal component analysis.

2013 ◽  
Vol 6 (1) ◽  
pp. 1-10 ◽  
Author(s):  
A. Grefte ◽  
M. Dignum ◽  
E. R. Cornelissen ◽  
L. C. Rietveld

Abstract. To guarantee a good water quality at the customers tap, natural organic matter (NOM) should be (partly) removed during drinking water treatment. The objective of this research was to improve the biological stability of the produced water by incorporating anion exchange (IEX) for NOM removal. Different placement positions of IEX in the treatment lane (IEX positioned before coagulation, before ozonation or after slow sand filtration) and two IEX configurations (MIEX® and fluidized IEX (FIX)) were compared on water quality as well as costs. For this purpose the pre-treatment plant at Loenderveen and production plant Weesperkarspel of Waternet were used as a case study. Both, MIEX® and FIX were able to remove NOM (mainly the HS fraction) to a high extent. NOM removal can be done efficiently before ozonation and after slow sand filtration. The biological stability, in terms of assimilable organic carbon, biofilm formation rate and dissolved organic carbon, was improved by incorporating IEX for NOM removal. The operational costs were assumed to be directly dependent of the NOM removal rate and determined the difference between the IEX positions. The total costs for IEX for the three positions were approximately equal (0.0631 € m−3), however the savings on following treatment processes caused a cost reduction for the IEX positions before coagulation and before ozonation compared to IEX positioned after slow sand filtration. IEX positioned before ozonation was most cost effective and improved the biological stability of the treated water.


Author(s):  
Ramunė Albrektienė ◽  
Mindaugas Rimeika ◽  
Elena Zalieckienė ◽  
Valentinas Šaulys ◽  
Alvydas Zagorskis

Organic matter in drinking water is determined by applying indirect determination methods used for quantitative measurements such as total organic carbon (TOC), chemical oxygen demand (COD), and biochemical oxygen demand (BOD). These analyses require expensive devices, harmful chemical reagents, and are time consuming. Standard water quality tests are inconvenient during start-up or reconstruction of drinking water treatment plants as samples need to be transported to a laboratory and no on-line measurements on plant performing efficiency are available. For practical purposes, less sophisticated and faster methods to determine organic matter are required. One of the methods could be ultraviolet absorption of water at 254 nm wavelength (UV254). It is a technically simple and fast method for determining natural organic matter, requiring neither expensive measurement equipment nor chemical reagents. The present article aims at investigating the possibilities of practical applications of UV254 method to determine the concentration of natural organic matter in ground water. The research proved good correlation between TOC and UV254, as well as between CODMn and UV254. The outcomes of the research indicate that UV254method can be successfully applied to determine natural organic matter concentrations in ground water. Santrauka Organinės medžiagos požeminiame vandenyje nustatomos netiesioginiais kiekybiniais bendrosios organinės anglies (BOA), cheminio deguonies suvartojimo (ChDSMn) ir biocheminio deguonies suvartojimo (BDS) metodais. Šioms analitėms nustatyti būtini brangūs prietaisai, kenksmingi cheminiai reagentai, tyrimai ilgai trunka. Diegiant naujus geriamojo vandens gerinimo įrenginius ir atliekant įrenginių paleidimo, derinimo bei eksploatavimo proceso efektyvumo vertinimą, minėtuosius geriamojo vandens tyrimus nepatogu ir brangu atlikti, todėl šiais atvejais reikia paprastesnio ir greitesnio organinių medžiagų nustatymo metodo. 254 nm bangos ilgio (UV254) ultravioletinių spindulių absorbcija yra techniškai paprastas, spartus organinių junginių koncentracijų nustatymo metodas, jį taikant nebūtina brangi tyrimų įranga bei cheminiai reagentai. Šio darbo tikslas buvo ištirti UV254 metodo tinkamumą organinių junginių koncentracijoms nustatyti požeminiame vandenyje. Atlikus tyrimus apibrėžtos priklausomybės tarp BOA ir UV254 bei tarp ChDSMn ir UV254. Remiantis tyrimų rezultatais galima teigti, kad ultravioletinių spindulių absorbcijos metodas gali būti sėkmingai taikomas organinių junginių koncentracijoms požeminiame vandenyje nustatyti.


2014 ◽  
Vol 5 (1) ◽  
pp. 72-82
Author(s):  
Dhaouadi Mellahi ◽  
Ridha Zerdoumi ◽  
Nacer Rebbani ◽  
Abdelhak Gheid

In Algeria, the use of chlorine in drinking water treatment is a widespread practice. When chlorine combines with natural organic matter (NOM), it forms various chlorine by-products such as trihalomethanes (THMs). In this work, we studied the relationship between chlorine consumption and THM formation, by chlorination of hydrophobic and transphilic (TRS) fractions. We compared the kinetic behavior and the THM formation potential of two major dams in east Algeria. A nonlinear regression modeling study showed a good correlation of the specific chlorine consumption and the specific THM formation. In the case of Ain Zeda dam and at pH = 7, the specific THM yield coefficients αS were: 6.57 and 10.22 μg-THM/mg-Cl2.mg-C.L−1 for hydrophobic and TRS fractions, respectively, while at the same pH, they were 12.07 and 23.66 μg-THM/mg-Cl2.mg-C.L−1 for Ain Dalia dam. Although the NOM concentration of Ain Zeda dam was higher than that of Ain Dalia dam, the THM formation potential of Ain Dalia dam was greater than that of Ain Zeda dam. It seems clear that the water source origin and characteristics play a key role in this case. They affect the THM formation due to the complex composition of humic substances which differs from one source to another.


2012 ◽  
Vol 5 (1) ◽  
pp. 375-401
Author(s):  
A. Grefte ◽  
M. Dignum ◽  
E. R. Cornelissen ◽  
L. C. Rietveld

Abstract. To guarantee a good water quality at the customers tap, natural organic matter (NOM) should be (partly) removed during drinking water treatment. The objective of this research was to improve the drinking water quality, including biological stability, by incorporating anion exchange (IEX) for NOM removal. Different placement positions of IEX in the treatment lane (IEX positioned before coagulation, before ozonation or after slow sand filtration) are compared on water quality as well as costs. For this purpose the pre-treatment plant at Loenderveen and production plant Weesperkarspel of Waternet were used as a case study. NOM removal can be done efficiently before ozonation and after slow sand filtration; it was found that the position in the treatment lane did not influence the NOM removal capacity. The operational costs were assumed to be directly dependent of the NOM removal rate and determined the difference between the IEX positions. The operational costs for IEX positioned before coagulation were higher than for IEX positioned after slow sand filtration, however the savings on following treatment processes caused a cost reduction compared to IEX positioned after slow sand filtration. IEX positioned before coagulation or ozonation were most cost effective and produced the highest water quality.


2016 ◽  
Vol 283 ◽  
pp. 330-337 ◽  
Author(s):  
Abdullah Ogutverici ◽  
Levent Yilmaz ◽  
Ulku Yetis ◽  
Filiz B. Dilek

1999 ◽  
Vol 40 (9) ◽  
pp. 47-54 ◽  
Author(s):  
C.R. O’Melia ◽  
W.C. Becker ◽  
K.-K. Au

Measurements and modeling of the adsorption of natural organic matter (NOM) on oxide surfaces are presented and compared. Agreement is good and supports the view that the adsorption of NOM on oxides depends significantly on complex formation reactions between specific sites on oxide surfaces and functional groups on the NOM. Coagulant requirements can and often are set by the total organic carbon (TOC) concentration in a water source. Frequently there is a stoichiometric relationship between the required coagulant dosage and the TOC of the water to be treated. Other important factors include pH and the concentration of divalent cations. Ozone may benefit or retard coagulation, depending on coagulant type and the water quality characteristic that is dominant in setting the optimum coagulant dose.


2005 ◽  
Vol 9 (1) ◽  
pp. 3-16 ◽  
Author(s):  
J. Z. Wang ◽  
R. S. Summers

Natural organic matter (NOM) in drinking water is a complex mixture of organic compounds. Some of the compounds are not biodegradable, while others are quickly biodegradable and a third group is more resistant to biodegradation. To have a better understanding of the biofiltration process in drinking water treatment, it is important to identify the elements of the quickly and slowly biodegradable NOM and to characterize the biodegradation rate of each element. In this study, an ozonated NOM solution was used as the substrate. The NOM was isolated from a groundwater in Germany using ion-exchange resins. The ozone dose was 0.35 mg O3/mg DOC (dissolved organic carbon). Previously bioacclimated sand was used as filter media and biomass source and was homogeneously distributed in the filter prior to each run. The substrate removal was evaluated by DOC, biodegradable DOC (BDOC), assimilable organic carbon (AOC), aldehyde and ketoacid analyses. When expressed in terms of the empty bed contact time (EBCT), the results showed that filter velocity in the range of 1.5 to 15 m/hr had no impact on substrate removal. This implies that substrate utilization, not external mass transfer, is the rate limiting step for substrate removal in drinking water biofilters. In this study, compounds or NOM fractions are termed quickly biodegradable if they are removed in the first three minutes of EBCT. 15% of the DOC was removed by the biofilter within three minutes of EBCT and was termed the quickly biodegradable fraction. The BDOC fraction of the ozonated solution was determined to be 40 to 45% of the DOC. In terms of BDOC, about one third of the total BDOC was quickly biodegradable. The AOC results show that about 90% of the total AOC was utilized by Spirillum sp. NOX (AOC-NOX). Most of the AOC was quickly biodegradable and was removed within one minute of EBCT. For aldehydes, glyoxal and methyl glyoxal were removed to below the detection limit after two minutes of EBCT. However, only 60% of formaldehyde removal was achieved in the first two minutes of EBCT, and no additional removal was achieved with increasing EBCT. Additionally, no significant removal of acetaldehyde was observed. The results of ketoacids show that their utilization rates were very high. More than 90% of glyoxylic acid and pyruvic acid were removed within one minute of EBCT.


Sign in / Sign up

Export Citation Format

Share Document