scholarly journals Urban Wetlands: A Review on Ecological and Cultural Values

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3301
Author(s):  
Somayeh Alikhani ◽  
Petri Nummi ◽  
Anne Ojala

Wetlands are a critical part of natural environments that offer a wide range of ecosystem services. In urban areas, wetlands contribute to the livability of cities through improving the water quality, carbon sequestration, providing habitats for wildlife species, reducing the effects of urban heat islands, and creating recreation opportunities. However, maintaining wetlands in urban areas faces many challenges, such as the reduction of hydrological functions, changed water regimes due to barriers, contamination by wastewater, habitat loss due to land-use change, and loss of biodiversity due to the entry of alien species. In this article, we review the theoretical background of wetlands in urban areas through the existing studies in the literature. We provide knowledge on urban wetlands and highlight the benefits of these wetlands in urban areas. These benefits include sustainability, biodiversity, urban heat islands, social perception, and recreation values. We also summarize the objectives, methodologies, and findings of the reviewed articles in five tables. In addition, we summarize the critical research gaps addressed in the reviewed articles. Our review study addresses the research gaps by performing a rigorous analysis to identify significant open research challenges, showing the path toward future research in the field. We further discuss and highlight the role of policymakers and stakeholders in preserving wetlands and finally present our conclusions.

2020 ◽  
Author(s):  
Isaac Buo ◽  
Valentina Sagris ◽  
Iuliia Burdun ◽  
Evelyn Uuemaa

2020 ◽  
Author(s):  
Eunice Lo ◽  
Dann Mitchell ◽  
Sylvia Bohnenstengel ◽  
Mat Collins ◽  
Ed Hawkins ◽  
...  

<p>Urban environments are known to be warmer than their sub-urban or rural surroundings, particularly at night. In summer, urban heat islands exacerbate the occurrence of extreme heat events, posing health risks to urban residents. In the UK where 90% of the population is projected to live in urban areas by 2050, projecting changes in urban heat islands in a warming climate is essential to adaptation and urban planning.</p><p>With the use of the new UK Climate Projections (UKCP18) in which urban land use is constant, I will show that both summer urban and sub-urban temperatures are projected to increase in the 10 most populous built-up areas in England between 1980 and 2080. However, differential warming rates in urban and sub-urban areas, and during day and at night suggest a trend towards a reduced daytime urban heat island effect but an enhanced night-time urban heat island effect. These changes in urban heat islands have implications on thermal comfort and local atmospheric circulations that impact the dispersion of air pollutants. I will further demonstrate that the opposite trends in daytime and night-time urban heat island effects are projected to emerge from current variability in more than half of the studied cities below a global mean warming of 3°C above pre-industrial levels.</p>


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 509A-509
Author(s):  
Derald A. Harp ◽  
Edward L. McWilliams

Urban areas have average annual temperatures 2–3°C warmer than surrounding rural areas, with daily differences of 5–6°C common. A suggested reason for this temperature difference is the extensive use of concrete, asphalt, and other building materials in the urban environment. Vegetation can moderate these temperatures by intercepting incoming radiation. The influence of vegetation patterns on the magnitude of urban and micro-urban “heat islands” (UHI and MUHI, respectively) is compared for several cities including Houston, Austin, College Station, and Ft. Worth, Texas; Huntsville, Ala.; and Gainesville, Fla. Temperatures for all cities studied were greatest in the built-up areas and dropped off in suburban areas and adjacent rural areas. In Houston, surrounding rice fields were 3–5°C cooler than urban areas. Heavily built-up areas of Austin were 2–4°C warmer than parks and fields outside of the city. In all of the cities, large parks were typically 2–3°C cooler than adjacent built-up areas. Large shopping malls varied in nocturnal winter and summer temperature, with winter temperatures near door openings 2–3°C warmer, and summer daytime temperatures as much as 17°C cooler beneath trees. This effect seemed to persist at the microclimatic scale. Areas beneath evergreen trees and shrubs were warmer in the winter than surrounding grass covered areas. Video thermography indicated that the lower surfaces of limbs in deciduous trees were warmer than the upper surfaces. Overall, vegetation played a significant role, both at the local and microscale, in temperature moderation.


2019 ◽  
Vol 33 (2) ◽  
pp. 162-172
Author(s):  
Iswari Nur Hidayati ◽  
R Suharyadi

Impervious surface is one of the major land cover types of urban and suburban environment. Conversion of rural landscapes and vegetation area to urban and suburban land use is directly related to the increase of the impervious surface area. The impervious surface expansion is straight-lined with decreasing green spaces in urban areas. Impervious surface is one of indicator for detecting urban heat islands. This study compares various indices for mapping impervious surfaces using Landsat 8 OLI imagery by optimizing the different spectral characteristics of Landsat 8 OLI imagery. The research objectives are (1) to apply various indices for impervious surface mapping and (2) identifies impervious surfaces in urban areas based on multiple indices and provide recommendations and find the best index for mapping impervious surface in urban areas. In addition to utilizing the index, land use supervised classification method, maximum likelihood classification used for extracting built-up, and non-built-up areas. Accuracy assessment of this research used field data collection as primary data for calculating kappa coefficient, producer accuracy, and user accuracy. The study can also be extended to find the land surface temperature and correlate the impervious surface extraction data with urban heat islands.


2019 ◽  
Vol 91 ◽  
pp. 05005 ◽  
Author(s):  
Minh Tuan Le ◽  
Nguyen Anh Quan Tran

The cumulative heating in some urban areas due to the urban growth and its types of industry, energy and transport, is the effect of urban heat island (UHI). It is recognized as one of the characteristics of the urban climate. The temperature increase caused by the effect (UHI) affects the energy flow in urban ecological systems, creates an unusual urban climate. By studying the effects of climate factors, local building materials to optimize energy efficiency, urban landscape, UHI phenomenon could be significantly moderated.


2020 ◽  
Vol 12 (20) ◽  
pp. 3345 ◽  
Author(s):  
Daniel Montaner-Fernández ◽  
Luis Morales-Salinas ◽  
José Sobrino Rodriguez ◽  
Luz Cárdenas-Jirón ◽  
Alfredo Huete ◽  
...  

Urban heat islands (UHIs) can present significant risks to human health. Santiago, Chile has around 7 million residents, concentrated in an average density of 480 people/km2. During the last few summer seasons, the highest extreme maximum temperatures in over 100 years have been recorded. Given the projections in temperature increase for this metropolitan region over the next 50 years, the Santiago UHI could have an important impact on the health and stress of the general population. We studied the presence and spatial variability of UHIs in Santiago during the summer seasons from 2005 to 2017 using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery and data from nine meteorological stations. Simple regression models, geographic weighted regression (GWR) models and geostatistical interpolations were used to find nocturnal thermal differences in UHIs of up to 9 °C, as well as increases in the magnitude and extension of the daytime heat island from summer 2014 to 2017. Understanding the behavior of the UHI of Santiago, Chile, is important for urban planners and local decision makers. Additionally, understanding the spatial pattern of the UHI could improve knowledge about how urban areas experience and could mitigate climate change.


2020 ◽  
pp. 91-110 ◽  
Author(s):  
Sarah E. Diamond ◽  
Ryan A. Martin

As humans continue to modify the climatic conditions organisms encounter, downstream effects on the phenotypes of organisms are likely to arise. In particular, the worldwide proliferation of human settlements rapidly generates pockets of localized warming across the landscape. These urban heat island effects are frequently intense, especially for moderate to larger sized cities, where urban centres can be several degrees Celsius warmer compared with nearby non-urban areas. Although organisms likely ameliorate the effects of warming through phenotypic plasticity, the evolution of thermally sensitive traits may be an important yet underappreciated means of survival. Recent work suggests the potential for contemporary evolutionary change in association with urban heat islands across a diverse suite of traits from morphology to physiological tolerance, growth rate, and metabolism. This chapter reviews and synthesizes this work. It first develops a comprehensive set of predictions for adaptive evolutionary changes in morphology, physiology, and life-history traits driven by urban heat islands. It then evaluates these predictions with regard to the burgeoning literature on urban evolution of thermally sensitive traits.


2021 ◽  
Author(s):  
Sebastian Schlögl ◽  
Nico Bader ◽  
Julien Gérard Anet ◽  
Martin Frey ◽  
Curdin Spirig ◽  
...  

<p>Today, more than half of the world’s population lives in urban areas and the proportion is projected to increase further in the near future. The increased number of heatwaves worldwide caused by the anthropogenic climate change may lead to heat stress and significant economic and ecological damages. Therefore, the growth of urban areas in combination with climate change can increase future mortality rates in cities, given that cities are more vulnerable to heatwaves due to the greater heat storage capacity of artificial surfaces towards higher longwave radiation fluxes.</p><p>To detect urban heat islands and resolve the micro-scale air temperature field in an urban environment, a low-cost air temperature network, including 450 sensors, was installed in the Swiss cities of Zurich and Basel in 2019 and 2020. These air temperature data, complemented with further official measurement stations, force a statistical air temperature downscaling model for urban environments, which is used operationally to calculate hourly micro-scale air temperatures in 10 m horizontal resolution. In addition to air temperature measurements from the low-cost sensor network, the model is further forced by albedo, NDVI, and NDBI values generated from the polar-orbiting satellite Sentinel-2, land surface temperatures estimated from Landsat-8, and high-resolution digital surface and elevation models.</p><p>Urban heat islands (UHI) are processed averaging hourly air temperatures over an entire year for each grid point, and comparing this average to the overall average in rural areas. UHI effects can then be correlated to high-resolution local climate zone maps and other local factors.</p><p>Between 60-80 % of the urban area is modeled with an accuracy below 1 K for an hourly time step indicating that the approach may work well in different cities. However, the outcome may depend on the complexity of the cities. The model error decreases rapidly by increasing the number of spatially distributed sensor data used to train the model, from 0 to 70 sensors, and then plateaus with further increases. An accuracy below 1 K can be expected for more than 50 air temperature measurements within the investigated cities and the surrounding rural areas. </p><p>A strong statistical air temperature model coupled with atmospheric boundary layer models (e.g. PALM-4U, MUKLIMO, FITNAH) will aid to generate highly resolved urban heat island prediction maps that help decision-makers to identify local heat islands easier. This will ensure that financial resources will be invested as efficiently as possible in mitigation actions.</p>


2013 ◽  
Vol 52 (9) ◽  
pp. 2051-2064 ◽  
Author(s):  
Dan Li ◽  
Elie Bou-Zeid

AbstractCities are well known to be hotter than the rural areas that surround them; this phenomenon is called the urban heat island. Heat waves are excessively hot periods during which the air temperatures of both urban and rural areas increase significantly. However, whether urban and rural temperatures respond in the same way to heat waves remains a critical unanswered question. In this study, a combination of observational and modeling analyses indicates synergies between urban heat islands and heat waves. That is, not only do heat waves increase the ambient temperatures, but they also intensify the difference between urban and rural temperatures. As a result, the added heat stress in cities will be even higher than the sum of the background urban heat island effect and the heat wave effect. Results presented here also attribute this added impact of heat waves on urban areas to the lack of surface moisture in urban areas and the low wind speed associated with heat waves. Given that heat waves are projected to become more frequent and that urban populations are substantially increasing, these findings underline the serious heat-related health risks facing urban residents in the twenty-first century. Adaptation and mitigation strategies will require joint efforts to reinvent the city, allowing for more green spaces and lesser disruption of the natural water cycle.


2012 ◽  
Vol 51 (4) ◽  
pp. 711-721 ◽  
Author(s):  
Dirk Wolters ◽  
Theo Brandsma

AbstractA better quantification of the urban heat islands (UHIs) in the Netherlands is urgently needed given the heat stress–related problems in the recent past combined with the expected temperature rise for the coming decades. Professional temperature observations in Dutch urban areas are scarce, however. Therefore, this research explores the use of observations from weather stations that were installed and maintained by weather amateurs. From a set of over 200 stations, suitable and representative data have been selected from 20 stations, using a set of objective selection criteria that are based on metadata. One year of data (January–December 2010) was considered. From these data, estimates have been obtained of the magnitude of the UHI in Dutch low-rise residential areas. A positive relation (linear model with r2 ≈ 0.7) was derived between the summer-averaged UHI and the (neighborhood scale) population density around the observational sites. It was found that the UHI in summer is strongest in nighttime conditions and that it increases with decreasing wind speed, decreasing cloud cover, and increasing sea level air pressure. The summer-averaged UHI was ~0.9°C. During nighttime in a relatively warm 1-month subperiod of the summer, the average UHI was ~1.4°C. During spring and autumn, the UHI was lower than in summer; during winter, no significant UHI was observed. The agreement in results among the different stations and the accordance of the magnitude and variation of the observed UHI with those described in the literature show that automatic observations from weather amateurs can be of sufficient quality for atmospheric research, provided that detailed metadata are available.


Sign in / Sign up

Export Citation Format

Share Document