scholarly journals Splitting and Length of Years for Improving Tree-Based Models to Predict Reference Crop Evapotranspiration in the Humid Regions of China

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3478
Author(s):  
Xiaoqiang Liu ◽  
Lifeng Wu ◽  
Fucang Zhang ◽  
Guomin Huang ◽  
Fulai Yan ◽  
...  

To improve the accuracy of estimating reference crop evapotranspiration for the efficient management of water resources and the optimal design of irrigation scheduling, the drawback of the traditional FAO-56 Penman–Monteith method requiring complete meteorological input variables needs to be overcome. This study evaluates the effects of using five data splitting strategies and three different time lengths of input datasets on predicting ET0. The random forest (RF) and extreme gradient boosting (XGB) models coupled with a K-fold cross-validation approach were applied to accomplish this objective. The results showed that the accuracy of the RF (R2 = 0.862, RMSE = 0.528, MAE = 0.383, NSE = 0.854) was overall better than that of XGB (R2 = 0.867, RMSE = 0.517, MAE = 0.377, NSE = 0.860) in different input parameters. Both the RF and XGB models with the combination of Tmax, Tmin, and Rs as inputs provided better accuracy on daily ET0 estimation than the corresponding models with other input combinations. Among all the data splitting strategies, S5 (with a 9:1 proportion) showed the optimal performance. Compared with the length of 30 years, the estimation accuracy of the 50-year length with limited data was reduced, while the length of meteorological data of 10 years improved the accuracy in southern China. Nevertheless, the performance of the 10-year data was the worst among the three time spans when considering the independent test. Therefore, to improve the daily ET0 predicting performance of the tree-based models in humid regions of China, the random forest model with datasets of 30 years and the 9:1 data splitting strategy is recommended.

2021 ◽  
Author(s):  
Long Zhao ◽  
Xinbo Zhao ◽  
Yi Shi ◽  
Yuhang Wang ◽  
Ningbo Cui ◽  
...  

Abstract Reference crop evapotranspiration (ETO) is a basic component of the hydrological cycle, and its estimation is critical for agricultural water resource management and scheduling. In this study, three tree-based machine learning algorithms (random forest [RF], gradient boosting decision tree [GBDT], and extreme gradient boosting [XGBoost]) were adopted to determine the essential factors for ETO prediction. The tree-based models were optimised using the Bayesian optimisation (BO) algorithm, and they were compared with three standalone models in terms of daily ETO and monthly mean ETO estimation in North China, with different input combinations of essential variables. The results indicated that solar radiation (Rs) and air temperature (Ts), including the maximum, minimum, and average temperature, in daily ETO were the key parameters affecting model prediction accuracy. Rs was the most influential factor in the monthly average ETO model, followed by Ts. Both relative humidity (RH) and wind speed at 2 m (U2) had little impact on ETO prediction at different scales, although their importance differed. Compared with the GBDT and RF models, the XGBoost model exhibited the highest performance for daily ETO and monthly mean ETO estimation. The hybrid tree-based models with the BO algorithm outperformed the standalone tree-based models. Overall, compared with other inputs, the model with three inputs (Rs, Ts, and RH/U2) had the highest accuracy. The BO-XGBoost model exhibited superior performance in terms of the global performance index (GPI) for daily ETO and monthly mean ETO prediction and it is recommended as a more accurate model predicting daily ETO and monthly mean ETO in North China or areas with a similar climate.


2021 ◽  
Vol 13 (5) ◽  
pp. 1021
Author(s):  
Hu Ding ◽  
Jiaming Na ◽  
Shangjing Jiang ◽  
Jie Zhu ◽  
Kai Liu ◽  
...  

Artificial terraces are of great importance for agricultural production and soil and water conservation. Automatic high-accuracy mapping of artificial terraces is the basis of monitoring and related studies. Previous research achieved artificial terrace mapping based on high-resolution digital elevation models (DEMs) or imagery. As a result of the importance of the contextual information for terrace mapping, object-based image analysis (OBIA) combined with machine learning (ML) technologies are widely used. However, the selection of an appropriate classifier is of great importance for the terrace mapping task. In this study, the performance of an integrated framework using OBIA and ML for terrace mapping was tested. A catchment, Zhifanggou, in the Loess Plateau, China, was used as the study area. First, optimized image segmentation was conducted. Then, features from the DEMs and imagery were extracted, and the correlations between the features were analyzed and ranked for classification. Finally, three different commonly-used ML classifiers, namely, extreme gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor (KNN), were used for terrace mapping. The comparison with the ground truth, as delineated by field survey, indicated that random forest performed best, with a 95.60% overall accuracy (followed by 94.16% and 92.33% for XGBoost and KNN, respectively). The influence of class imbalance and feature selection is discussed. This work provides a credible framework for mapping artificial terraces.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jong Ho Kim ◽  
Haewon Kim ◽  
Ji Su Jang ◽  
Sung Mi Hwang ◽  
So Young Lim ◽  
...  

Abstract Background Predicting difficult airway is challengeable in patients with limited airway evaluation. The aim of this study is to develop and validate a model that predicts difficult laryngoscopy by machine learning of neck circumference and thyromental height as predictors that can be used even for patients with limited airway evaluation. Methods Variables for prediction of difficulty laryngoscopy included age, sex, height, weight, body mass index, neck circumference, and thyromental distance. Difficult laryngoscopy was defined as Grade 3 and 4 by the Cormack-Lehane classification. The preanesthesia and anesthesia data of 1677 patients who had undergone general anesthesia at a single center were collected. The data set was randomly stratified into a training set (80%) and a test set (20%), with equal distribution of difficulty laryngoscopy. The training data sets were trained with five algorithms (logistic regression, multilayer perceptron, random forest, extreme gradient boosting, and light gradient boosting machine). The prediction models were validated through a test set. Results The model’s performance using random forest was best (area under receiver operating characteristic curve = 0.79 [95% confidence interval: 0.72–0.86], area under precision-recall curve = 0.32 [95% confidence interval: 0.27–0.37]). Conclusions Machine learning can predict difficult laryngoscopy through a combination of several predictors including neck circumference and thyromental height. The performance of the model can be improved with more data, a new variable and combination of models.


Sign in / Sign up

Export Citation Format

Share Document