scholarly journals A First Glimpse on Cold-Adapted PCB-Oxidizing Bacteria in Edmonson Point Lakes (Northern Victoria Land, Antarctica)

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 109
Author(s):  
Maria Papale ◽  
Angelina Lo Giudice ◽  
Alessandro Ciro Rappazzo ◽  
Maurizio Azzaro ◽  
Carmen Rizzo

Antarctic freshwater ecosystems are especially vulnerable to human impacts. Polychlorobiphenyls (PCBs) are persistent organic pollutants that have a long lifetime in the environment. Despite their use having either been phased out or restricted, they are still found in nature, also in remote areas. Once in the environment, the fate of PCBs is strictly linked to bacteria which represent the first step in the transfer of toxic compounds to higher trophic levels. Data on PCB-oxidizing bacteria from polar areas are still scarce and fragmented. In this study, the occurrence of PCB-oxidizing cold-adapted bacteria was evaluated in water and sediment of four coastal lakes at Edmonson Point (Northern Victoria Land, Antarctica). After enrichment with biphenyl, 192 isolates were obtained with 57 of them that were able to grow in the presence of the PCB mixture Aroclor 1242, as the sole carbon source. The catabolic gene bphA, as a proxy for PCB degradation potential, was harbored by 37 isolates (out of 57), mainly affiliated to the genera Salinibacterium, Arthrobacter (among Actinobacteria) and Pusillimonas (among Betaproteobacteria). Obtained results enlarge our current knowledge on cold-adapted PCB-oxidizing bacteria and pose the basis for their potential application as a valuable eco-friendly tool for the recovery of PCB-contaminated cold sites.

2017 ◽  
Vol 25 (4) ◽  
pp. 481-491 ◽  
Author(s):  
Klaudia Kosek ◽  
Katarzyna Jankowska ◽  
Żaneta Polkowska

Microbes are omnipresent and diverse members of all biological communities. In marine and freshwater ecosystems, microorganisms form the base of the food chain supporting higher trophic levels. Even though microbes are generally thought to live in warm regions of Earth, many of them develop in cold climates. Polar regions remain relatively protected from widespread anthropogenic disturbances, which is a consequence of thier remoteness and extreme climate conditions. For a long time these regions were considered to be free from chemical contamination until scientists discovered a presence of pollutants there. Chemical contamination may induce serious disorders in the integrity of polar ecosystems influencing the growth of bacterial communities. Xenobiotics including persistent organic pollutants are transported thousands of kilometers by the air and ocean currents, and they are deposed in high-latitude regions and accumulate in all elements of the environment including bacterial communities. It is important to determine their concentration levels in bacterial cells to assess the possibility of contaminants becoming transferred to higher trophic levels; however, some species of bacteria are capable of metabolizing xenobiotics, which makes them less toxic or even removes them from the environment.


2010 ◽  
Vol 22 (6) ◽  
pp. 742-748 ◽  
Author(s):  
Tancredi Caruso ◽  
Ian D. Hogg ◽  
Roberto Bargagli

AbstractBiotic communities in Antarctic terrestrial ecosystems are relatively simple and often lack higher trophic levels (e.g. predators); thus, it is often assumed that species’ distributions are mainly affected by abiotic factors such as climatic conditions, which change with increasing latitude, altitude and/or distance from the coast. However, it is becoming increasingly apparent that factors other than geographical gradients affect the distribution of organisms with low dispersal capability such as the terrestrial arthropods. In Victoria Land (East Antarctica) the distribution of springtail (Collembola) and mite (Acari) species vary at scales that range from a few square centimetres to regional and continental. Different species show different scales of variation that relate to factors such as local geological and glaciological history, and biotic interactions, but only weakly with latitudinal/altitudinal gradients. Here, we review the relevant literature and outline more appropriate sampling designs as well as suitable modelling techniques (e.g. linear mixed models and eigenvector mapping), that will more adequately address and identify the range of factors responsible for the distribution of terrestrial arthropods in Antarctica.


2015 ◽  
Vol 112 (22) ◽  
pp. 7045-7050 ◽  
Author(s):  
Andrea Giometto ◽  
Florian Altermatt ◽  
Amos Maritan ◽  
Roman Stocker ◽  
Andrea Rinaldo

Phototaxis, the process through which motile organisms direct their swimming toward or away from light, is implicated in key ecological phenomena (including algal blooms and diel vertical migration) that shape the distribution, diversity, and productivity of phytoplankton and thus energy transfer to higher trophic levels in aquatic ecosystems. Phototaxis also finds important applications in biofuel reactors and microbiopropellers and is argued to serve as a benchmark for the study of biological invasions in heterogeneous environments owing to the ease of generating stochastic light fields. Despite its ecological and technological relevance, an experimentally tested, general theoretical model of phototaxis seems unavailable to date. Here, we present accurate measurements of the behavior of the algaEuglena graciliswhen exposed to controlled light fields. Analysis ofE. gracilis’ phototactic accumulation dynamics over a broad range of light intensities proves that the classic Keller–Segel mathematical framework for taxis provides an accurate description of both positive and negative phototaxis only when phototactic sensitivity is modeled by a generalized “receptor law,” a specific nonlinear response function to light intensity that drives algae toward beneficial light conditions and away from harmful ones. The proposed phototactic model captures the temporal dynamics of both cells’ accumulation toward light sources and their dispersion upon light cessation. The model could thus be of use in integrating models of vertical phytoplankton migrations in marine and freshwater ecosystems, and in the design of bioreactors.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3423 ◽  
Author(s):  
Ty N.F. Roach ◽  
Maria L. Abieri ◽  
Emma E. George ◽  
Ben Knowles ◽  
Douglas S. Naliboff ◽  
...  

Human impacts are causing ecosystem phase shifts from coral- to algal-dominated reef systems on a global scale. As these ecosystems undergo transition, there is an increased incidence of coral-macroalgal interactions. Mounting evidence indicates that the outcome of these interaction events is, in part, governed by microbially mediated dynamics. The allocation of available energy through different trophic levels, including the microbial food web, determines the outcome of these interactions and ultimately shapes the benthic community structure. However, little is known about the underlying thermodynamic mechanisms involved in these trophic energy transfers. This study utilizes a novel combination of methods including calorimetry, flow cytometry, and optical oxygen measurements, to provide a bioenergetic analysis of coral-macroalgal interactions in a controlled aquarium setting. We demonstrate that the energetic demands of microbial communities at the coral-algal interaction interface are higher than in the communities associated with either of the macroorganisms alone. This was evident through higher microbial power output (energy use per unit time) and lower oxygen concentrations at interaction zones compared to areas distal from the interface. Increases in microbial power output and lower oxygen concentrations were significantly correlated with the ratio of heterotrophic to autotrophic microbes but not the total microbial abundance. These results suggest that coral-algal interfaces harbor higher proportions of heterotrophic microbes that are optimizing maximal power output, as opposed to yield. This yield to power shift offers a possible thermodynamic mechanism underlying the transition from coral- to algal-dominated reef ecosystems currently being observed worldwide. As changes in the power output of an ecosystem are a significant indicator of the current state of the system, this analysis provides a novel and insightful means to quantify microbial impacts on reef health.


2021 ◽  
Author(s):  
Vili Virkki ◽  
Elina Alanärä ◽  
Miina Porkka ◽  
Lauri Ahopelto ◽  
Tom Gleeson ◽  
...  

<p>The benefits of harnessing rivers into human use should not come with a disproportionate expense on the Earth system. Especially, freshwater ecosystems suffer greatly from direct and indirect human impacts, such as excessive water withdrawals and climate change, which are expected to only increase in the near future. Here, we aim for quantifying the extent and degree of considerable flow alterations that threaten the well-being of freshwater ecosystems, across the world.</p><p>At the global scale, the ecological status of river systems is often assessed using global hydrological models (GHMs) and hydrological environmental flow (EF) methods. These suffer from substantial uncertainties: 1) the GHMs parameterised with variable climate forcings may give highly dispersed discharge estimates and 2) individual hydrological EF methods capture ecosystem water needs poorly. We tackle these sources of uncertainty by introducing a novel methodology: environmental flow envelopes (EFEs). The EFE is an envelope of safe discharge variability between a lower and an upper bound, defined at the sub-basin scale in monthly time resolution. It is based on pre-industrial (1801-1860) discharge and a large ensemble of EF methods, GHMs, and climate forcings, using ISI-MIP2b data. Using the EFE, we can simultaneously assess the frequency and severity of ecosystem-threatening flow alterations.</p><p>Comparing post-industrial (1976-2005) discharge to the EFEs, discharge in 32.7% of the total 3860 sub-basins, covering 28.4% of the global landmass, violates the EFE during more than 10% of all months across four GHMs. These violations are considered as severe threats to freshwater ecosystems. The most impacted regions include areas with high anthropogenic pressure, such as the Middle East, India, Eastern Asia, and Middle America. The violations clearly concentrate on the EFE lower bound during low or intermediate flow seasons. Discharge in 61.4% of sub-basins violates the EFE during more than 10% of low flow season months, average violation being 47.5% below the safe limit denoted by EFE lower bound. Indications of significantly increased flows by violations of the EFE upper bound are fewer and further apart, as well as lower bound violations during high flow season.</p><p>Although fractional discharge allocations alone cannot fully capture the ecosystem water needs, this study is a step towards less uncertainty in global EF assessments. The introduced method provides a novel, globally robust way of estimating ecosystem water needs at the sub-basin scale. The results of this study underline the importance of the low flow season, during which EFE violations are the most prevalent. While only preliminary evidence of significantly increased flows emerges in relatively few areas, the EFE upper bound would benefit from further research. The EFE methodology can be used for exploring macro-regional areas where anthropogenic flow alteration threatens freshwater ecosystems the most. However, case-specific studies incorporating factors beyond quantitative flow only are required for practical implications.</p>


1996 ◽  
Vol 130 (4-6) ◽  
pp. 960-962 ◽  
Author(s):  
N. La Rocca ◽  
I. Moro ◽  
C. Andreoli
Keyword(s):  

2020 ◽  
pp. SP511-2020-109
Author(s):  
F. M. C. McCarthy ◽  
P. M. Pilkington ◽  
O. Volik ◽  
A. Heyde ◽  
S. L. Cocker

AbstractThe earliest eukaryotes recorded in continental environments are non-pollen palynomorphs (NPP) in Mesoproterozoic strata, and NPP provide our best insights into lacustrine ecosystems through the Paleogene. They have been underexploited in studies of younger lake sediments, either ignored or only qualitatively observed, because many NPP are destroyed by standard processing techniques for pollen and embryophyte spores. The palaeoenvironmental potential of palynomorphs, with representatives from all eukaryotic kingdoms as well as cyanobacteria and from all trophic levels in various lacustrine environments, has been recognized by a few Quaternary palynologists in the past few decades. NPP have proven particularly valuable in archaeological and environmental monitoring studies of human impact on freshwater ecosystems, with spores of some fungi and eggs/ egg cases of some flatworms and roundworms associated with feces of humans and livestock, and the acid-resistant remains of various life stages of cyanobacteria, algae, and their aquatic consumers responding to increased turbidity and nutrient influx associated with permanent human settlements, particularly those associated with agricultural activity. Descriptions of NPP commonly encountered in Quaternary lake sediments and case studies illustrating applications to various research questions should encourage more palynologists that ‘Quaternary non-pollen palynomorphs' deserve our attention!’, to quote Prof. Bas van Geel, undisputed Father of NPP Research.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5244661


2002 ◽  
Vol 45 (11) ◽  
pp. 11-19 ◽  
Author(s):  
D. Dudgeon

There are few parts of the planet where human impacts on riverine biodiversity are more apparent than in monsoonal Asia. Flow regulation, drainage-basin degradation and conversion of riverine wetlands to agriculture have been occurring for centuries, while pollution and over-harvesting have become important in recent decades. Concomitant species loss appears both ongoing and rampant. Uncertainty over rates of loss is imposed by the fact that the extremely rich biodiversity of Asian rivers has not been inventoried adequately. It is nevertheless evident that some taxa are gravely threatened. Specialist riverine birds have declined, turtles are highly endangered, and over-harvesting has severely impacted fishes - an effect that is exacerbated by pollution and flow regulation. A particular conflict that constrains biodiversity conservation is the tendency for dam construction, which damages river ecosystems, to produce tangible benefits for humans through hydropower generation and relief from floods and droughts. Resolution of such conflicts requires changes in perception: for instance, realistic economic valuations of the ecosystem goods and services provided by rivers, and promotion of flagship species as conservation icons to increase citizen awareness. Translation of awareness and knowledge to action, however, remains the essential prerequisite for societal commitment to the conservation of freshwater ecosystems.


2017 ◽  
Author(s):  
Vasco Elbrecht ◽  
Florian Leese

A central challenge in the present era of biodiversity loss is to assess and manage human impacts on freshwater ecosystems. Macroinvertebrates are an important group for bioassessment as many taxa show specific responses to environmental conditions. However, generating accurate macroinvertebrate inventories based on larval morphology is difficult and error-prone. Here, DNA metabarcoding provides new opportunities. Its potential to accurately identify invertebrates in bulk samples to the species level, has been demonstrated in several case studies. However, DNA based identification is often limited by primer bias, potentially leading to taxa in the sample remaining undetected. Thus, the success of DNA metabarcoding as an emerging technique for bioassessment critically relies on carefully evaluating primers. We used the R package PrimerMiner to obtain and process cytochrome c oxidase I (COI) sequence data for the 15 most globally relevant freshwater invertebrate groups for stream assessment. Using these sequence alignments, we developed four primer combinations optimized for freshwater macrozoobenthos. All primers were evaluated by sequencing ten mock community samples, each consisting of 52 freshwater invertebrate taxa. Additionally, popular metabarcoding primers from the literature and the developed primers were tested in silico against the 15 relevant invertebrate groups. The developed primers varied in amplification efficiency and the number of detected taxa, yet all detected more taxa than standard ‘Folmer’ barcoding primers. Two new primer combinations showed more consistent amplification than a previously tested ribosomal marker (16S) and detected all 42 insect taxa present in the mock community samples. In silico evaluation revealed critical design flaws in some commonly used primers from the literature. We demonstrate a reliable strategy to develop optimized primers using the tool PrimerMiner. The developed primers detected almost all taxa present in the mock samples, and we argue that high base degeneracy is necessary to decrease primer bias as confirmed by experimental results and in silico primer evaluation. We further demonstrate that some primers currently used in metabarcoding studies may not be suitable for amplification of freshwater macroinvertebrates. Therefore, careful primer evaluation and more region / ecosystem specific primers are needed before DNA metabarcoding can be used for routine bioassessment of freshwater ecosystems.


Sign in / Sign up

Export Citation Format

Share Document