scholarly journals A Model for the Thermal Behaviour of an Offshore Cable Installed in a J-Tube

Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 31
Author(s):  
Jeremy Arancio ◽  
Ahmed Ould El Moctar ◽  
Minh Nguyen Tuan ◽  
Faradj Tayat ◽  
Jean-Philippe Roques

In the race for energy production, supplier companies are concerned by the thermal rating of offshore cables installed in a J-tube, not covered by IEC 60287 standards, and are now looking for solutions to optimize this type of system. This paper presents a numerical model capable of calculating temperature fields of a power transmission cable installed in a J-tube, based on the lumped element method. This model is validated against the existing literature. A sensitivity analysis performed using Sobol indices is then presented in order to understand the impact of the different parameters involved in the heating of the cable. This analysis provides an understanding of the thermal phenomena in the J-tube and paves the way for potential technical and economic solutions to increase the ampacity of offshore cables installed in a J-tube.

Author(s):  
Souransu Nandi ◽  
Tarunraj Singh

The focus of this paper is on the global sensitivity analysis (GSA) of linear systems with time-invariant model parameter uncertainties and driven by stochastic inputs. The Sobol' indices of the evolving mean and variance estimates of states are used to assess the impact of the time-invariant uncertain model parameters and the statistics of the stochastic input on the uncertainty of the output. Numerical results on two benchmark problems help illustrate that it is conceivable that parameters, which are not so significant in contributing to the uncertainty of the mean, can be extremely significant in contributing to the uncertainty of the variances. The paper uses a polynomial chaos (PC) approach to synthesize a surrogate probabilistic model of the stochastic system after using Lagrange interpolation polynomials (LIPs) as PC bases. The Sobol' indices are then directly evaluated from the PC coefficients. Although this concept is not new, a novel interpretation of stochastic collocation-based PC and intrusive PC is presented where they are shown to represent identical probabilistic models when the system under consideration is linear. This result now permits treating linear models as black boxes to develop intrusive PC surrogates.


2019 ◽  
Vol 85 ◽  
pp. 02017 ◽  
Author(s):  
Andrei-Stelian Bejan ◽  
Florin Bode ◽  
Tiberiu Catalina ◽  
Cătalin Teodosiu

In order to achieve the numerical model of a transpired solar collector (TSC) with integrated phase changing materials (PCM) it is mandatory to study the impact of the orifice geometry on the entire system. The numerical simulation of the entire solar collector absorber metal plate (1000x2000mm and 5000 orifices) is not feasible thus resulting a huge number of cells for the numerical grid for which we will need very high computational resources and a very large amount of time to be solved. By taking these aspects into account we decided to simulate only four equivalent orifices and then to transpose the results to the actual case for further studies. The present paper aims to analyse the mesh independency study for an elementary perforated panel with four equivalent lobed orifices which is part of a real case TSC. This analysis represents one of the most important stages within the construction of the TSC numerical model and doesn't need an experimental validation. The study was conducted in Ansys Fluent CFD software and the results were processed directly by using Tecplot software. Six different meshes were analysed (from 0.2 to 7.3 million cells), boundary conditions were imposed, and k-ε RNG turbulence model was used according to the literature. After comparing velocity and temperature fields in longitudinal and transverse planes we concluded that from 5.3 million cells the solution is independent of the meshing quality.


2021 ◽  
Author(s):  
Emilie Rouzies ◽  
Claire Lauvernet ◽  
Bruno Sudret ◽  
Arthur Vidard

Abstract. Pesticide transfers in agricultural catchments are responsible for diffuse but major risks to water quality. Spatialized pesticide transfer models are useful tools to assess the impact of the structure of the landscape on water quality. Before considering using these tools in operational contexts, quantifying their uncertainties is a preliminary necessary step. In this study, we explored how global sensitivity analysis can be applied to the recent PESHMELBA pesticide transfer model to quantify uncertainties on transfer simulations. We set up a virtual catchment based on a real one and we compared different approaches for sensitivity analysis that could handle the specificities of the model: high number of input parameters, limited size of sample due to computational cost and spatialized output. We compared Sobol' indices obtained from Polynomial Chaos Expansion, HSIC dependence measures and feature importance measures obtained from Random Forest surrogate model. Results showed the consistency of the different methods and they highlighted the relevance of Sobol' indices to capture interactions between parameters. Sensitivity indices were first computed for each landscape element (site sensitivity indices). Second, we proposed to aggregate them at the hillslope and the catchment scale in order to get a summary of the model sensitivity and a valuable insight into the model hydrodynamical behaviour. The methodology proposed in this paper may be extended to other modular and distributed hydrological models as there has been a growing interest in these methods in recent years.


2011 ◽  
Vol 474-476 ◽  
pp. 1855-1858
Author(s):  
Xin Yong Xu ◽  
Jian Wei Wang ◽  
Zhen Yue Ma

A numerical model for spiral case of hydropower station is built. The contact is considered and the sensitivity analysis for different reinforcement ratio is analyzed. The impact of different ratios on structure is studied. The stress and mechanical characteristics of steel bar is analyzed. The contact status is taken. The rational reinforcement ratio range, the process and evolution regularity of concrete cracks from microcosmic aspect to macroscopic aspect are obtained.


2021 ◽  
Author(s):  
Alfonso Santiago ◽  
Constantine Butakoff ◽  
Beatriz Eguzkitza ◽  
Richard A Gray ◽  
Karen May-Newman ◽  
...  

Background: left ventricular assist devices (LVADs) are implantable pumps that act as a life support therapy for patients with severe heart failure. Despite improving the survival rate, LVAD therapy can carry major complications. Particularly, the flow distortion introduced by the LVAD in the left ventricle (LV) may induce thrombus formation. While previous works have used numerical models to study the impact of multiple variables in the intra-LV stagnation regions, a comprehensive validation analysis has never been executed. The main goal of this work is to present a model of the LV-LVAD system and to design and follow a verification, validation and uncertainty quantification (VVUQ) plan based on the ASME V&V40 and V&V20 standards to ensure credible predictions. Methods: The experiment used to validate the simulation is the SDSU cardiac simulator, a bench mock-up of the cardiovascular system that allows mimicking multiple operation conditions for the heart-LVAD system. The numerical model is based on Alya, the BSC's in-house platform for numerical modelling. Alya solves the Navier-Stokes equation with an Arbitrarian Lagrangian-Eulerian (ALE) formulation in a deformable ventricle and includes pressure-driven valves, a 0D Windkessel model for the arterial output and a LVAD boundary condition modeled through a dynamic pressure-flow performance curve. The designed VVUQ plan involves: (a) a risk analysis and the associated credibility goals; (b) a verification stage to ensure correctness in the numerical solution procedure; (c) a sensitivity analysis to quantify the impact of the inputs on the four quantities of interest (QoIs) (average aortic root flow, maximum aortic root flow, average LVAD flow, and maximum LVAD flow); (d) an uncertainty quantification using six validation experiments that include extreme operating conditions. Results: Numerical code verification tests ensured correctness of the solution procedure and numerical calculation verification showed small numerical errors. The total Sobol indices obtained during the sensitivity analysis demonstrated that the ejection fraction, the heart rate, and the pump performance curve coefficients are the most impactful inputs for the analysed QoIs. The Minkowski norm is used as validation metric for the uncertainty quantification. It shows that the midpoint cases have more accurate results when compared to the extreme cases. The total computational cost of the simulations was above 100 [core-years] executed in around three weeks time span in Marenostrum IV supercomputer. Conclusions: This work details a novel numerical model for the LV-LVAD system, that is supported by the design and execution of a VVUQ plan created following recognised international standards. We present a methodology demonstrating that stringent VVUQ according to ASME standards is feasible but computationally expensive.


2013 ◽  
Vol 1 (2) ◽  
pp. 209-234 ◽  
Author(s):  
Pengyuan Wang ◽  
Mikhail Traskin ◽  
Dylan S. Small

AbstractThe before-and-after study with multiple unaffected control groups is widely applied to study treatment effects. The current methods usually assume that the control groups’ differences between the before and after periods, i.e. the group time effects, follow a normal distribution. However, there is usually no strong a priori evidence for the normality assumption, and there are not enough control groups to check the assumption. We propose to use a flexible skew-t distribution family to model group time effects, and consider a range of plausible skew-t distributions. Based on the skew-t distribution assumption, we propose a robust-t method to guarantee nominal significance level under a wide range of skew-t distributions, and hence make the inference robust to misspecification of the distribution of group time effects. We also propose a two-stage approach, which has lower power compared to the robust-t method, but provides an opportunity to conduct sensitivity analysis. Hence, the overall method of analysis is to use the robust-t method to test for the overall hypothesized range of shapes of group variation; if the test fails to reject, use the two-stage method to conduct a sensitivity analysis to see if there is a subset of group variation parameters for which we can be confident that there is a treatment effect. We apply the proposed methods to two datasets. One dataset is from the Current Population Survey (CPS) to study the impact of the Mariel Boatlift on Miami unemployment rates between 1979 and 1982.The other dataset contains the student enrollment and grade repeating data in West Germany in the 1960s with which we study the impact of the short school year in 1966–1967 on grade repeating rates.


Proceedings ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 13
Author(s):  
Yixuan Sun ◽  
Stephen Beeby

This paper presents the COMSOL simulations of magnetically coupled resonant wireless power transfer (WPT), using simplified coil models for embroidered planar two-coil and four-coil systems. The power transmission of both systems is studied and compared by varying the separation, rotation angle and misalignment distance at resonance (5 MHz). The frequency splitting occurs at short separations from both the two-coil and four-coil systems, resulting in lower power transmission. Therefore, the systems are driven from 4 MHz to 6 MHz to analyze the impact of frequency splitting at close separations. The results show that both systems had a peak efficiency over 90% after tuning to the proper frequency to overcome the frequency splitting phenomenon at close separations below 10 cm. The four-coil design achieved higher power efficiency at separations over 10 cm. The power efficiency of both systems decreased linearly when the axial misalignment was over 4 cm or the misalignment angle between receiver and transmitter was over 45 degrees.


Sign in / Sign up

Export Citation Format

Share Document