scholarly journals Battery Sizing for Electric Vehicles Based on Real Driving Patterns in Thailand

2019 ◽  
Vol 10 (2) ◽  
pp. 43
Author(s):  
Bongkotchaporn Duangsrikaew ◽  
Jiravan Mongkoltanatas ◽  
Chi-na Benyajati ◽  
Preecha Karin ◽  
Katsunori Hanamura

The rising population in suburban areas have led to an increasing demand for commuter buses. Coupled with a desire to reduce pollution from the daily routine of traveling and transportation, electric vehicles have become more interesting as an alternative placement for internal combustion engine vehicles. However, in comparison to those conventional vehicles, electric vehicles have an issue of limited driving range. One of the main challenges in designing electric vehicles (EVs) is to estimate the size and power of energy storage system, i.e., battery pack, for any specific application. Reliable information on energy consumption of vehicle of interest is therefore necessary for a successful EV implementation in terms of both performance and cost. However, energy consumption usually depends on several factors such as traffic conditions, driving cycle, velocities, road topology, etc. This paper presents an energy consumption analysis of electric vehicle in three different route types i.e., closed-area, inter-city, and local feeder operated by campus tram and shuttle bus. The driving data of NGV campus trams operating in a university located in suburban Bangkok and that of shuttle buses operating between local areas and en route to the city were collected and the corresponding representative driving cycles for each route were generated. The purpose of this study was to carry out a battery sizing based on the fulfilment of power requirements from the representative real driving pattern in Thailand. The real driving cycle data i.e., velocity and vehicle global position were collected through a GPS-based piece of equipment, VBOX. Three campus driving data types were gathered to achieve a suitable dimensioning of battery systems for electrified university public buses.

2021 ◽  
Vol 13 (8) ◽  
pp. 4549
Author(s):  
Sara Salamone ◽  
Basilio Lenzo ◽  
Giovanni Lutzemberger ◽  
Francesco Bucchi ◽  
Luca Sani

In electric vehicles with multiple motors, the torque at each wheel can be controlled independently, offering significant opportunities for enhancing vehicle dynamics behaviour and system efficiency. This paper investigates energy efficient torque distribution strategies for improving the operational efficiency of electric vehicles with multiple motors. The proposed strategies are based on the minimisation of power losses, considering the powertrain efficiency characteristics, and are easily implementable in real-time. A longitudinal dynamics vehicle model is developed in Simulink/Simscape environment, including energy models for the electrical machines, the converter, and the energy storage system. The energy efficient torque distribution strategies are compared with simple distribution schemes under different standardised driving cycles. The effect of the different strategies on the powertrain elements, such as the electric machine and the energy storage system, are analysed. Simulation results show that the optimal torque distribution strategies provide a reduction in energy consumption of up to 5.5% for the case-study vehicle compared to simple distribution strategies, also benefiting the battery state of charge.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2102
Author(s):  
Josef Stetina ◽  
Michael Bohm ◽  
Michal Brezina

A micro cogeneration unit based on a three-cylinder internal combustion engine, Skoda MPI 1.0 L compressed natural gas (CNG), with an output of 25 kW at 3000 RPM is proposed in this paper. It is a relatively simple engine, which is already adopted by the manufacturer to operate on CNG. The engine life and design correspond to the original purpose of use in the vehicle. A detailed dynamic model was created in the GT-SUITE environment and implemented into an energy balance model that includes its internal combustion engine, heat exchangers, generator, battery storage, and water storage tank. The 1D internal combustion engine model provides us with information on engine start-up time, actual effective power, friction power, and the amount of heat going to the cooling system and exhaust pipe. The catalytic converter was removed from the exhaust pipe, and the engine was always operating at full load; thus, engine power control is not considered. An energy storage system for an island operation of the entire power unit for a large, detached house was designed to withstand accumulated energy for a few days in the case of a breakout. To reach a low initial system cost, the possible implementation of worn-out battery packs toward emission reduction in terms of the second life of the battery is proposed. The energy and emission balance are carried out, and the service life of the engine is also discussed.


Sign in / Sign up

Export Citation Format

Share Document