scholarly journals An Anti-Interference Control Method for an AGV-WPT System Based on UIO-SMC

2021 ◽  
Vol 12 (4) ◽  
pp. 220
Author(s):  
Jun Hou ◽  
Weidong Huang ◽  
Dongxiao Huang

During the wireless charging of an automated guided vehicle (AGV), the output voltage is unstable due to changes in parameters such as coil mutual inductance and load resistance caused by external interferences and internal mismatches of the system. In this paper, an integral sliding mode control method based on an unknown input observer (UIO) containing predictive equations is designed to build an inductor–capacitor–capacitor-series (LCC-S) topology model for wireless power transfer (WPT). The observer designed by this method can perceive changes in the secondary resistance parameter and the mutual inductance of the primary and secondary coils. The design with the prediction equation speeds up the convergence of the observer to the true value. The observer’s compensation of the control system avoids the occurrence of integral oversaturation. The experimental results show that, based on the UIO-SMC system output, voltage can be accurately controlled to meet the requirement for a given voltage. The effect of suppressing disturbance is better than with SMC and PI control. When the system parameter changes, it has better voltage anti-interference performance and stronger ripple suppression.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Sheng Xue ◽  
Xinggui Wang ◽  
Xiaoying Li

As a novel topology of microgrid, the output voltage control of MMC half bridge series microgrid (MMC-MG) is rarely studied. In this paper, on the basis of fully analyzing the mechanism of output voltage fluctuation of MMC-MG under the condition of islanded mode, a control strategy of a hybrid energy storage system is proposed to reduce the generating module (GM) DC-link voltage fluctuation caused by the randomness of renewable energy microsource output power. Moreover, in order to further improve the stabilization of the MMC-MG output voltage and meet the requirements of fast voltage recovery and antijamming, a sliding mode controller is designed. Then, a voltage fluctuation compensation controller is designed to suppress the DC component and fundamental frequency deviation of system output voltage caused by GM DC-link voltage fluctuation. The proposed control approach is validated against simulations using MMC-MG models with 4-GM per arm. The results show that the proposed hybrid energy storage control strategy can suppress the GM DC-link voltage fluctuation, the sliding mode controller can stabilize the system output voltage when the load drastic changes, and the fluctuation compensation strategy can suppress the DC component and the fundamental frequency deviation of system output voltage.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Guangshi Li

In this paper, an adaptive sliding mode control method based on neural networks is presented for a class of manipulator systems. The main characteristic of the discussed system is that the output variable is required to keep within a constraint set. In order to ensure that the system output meets the time-varying constraint condition, the asymmetric barrier Lyapunov function is selected in the design process. According to Lyapunov stability theory, the stability of the closed-loop system is analyzed. It is demonstrated that all signals in the resulted system are bounded, the tracking error converges to a small compact set, and the system output limits in its constrained set. Finally, the simulation example is used to show the effectiveness of the presented control strategy.


2021 ◽  
Vol 16 (5) ◽  
pp. 766-772
Author(s):  
Le Luo ◽  
Ming-Zhong Yang

In this paper, a new discrete-time sliding mode predictive control (DSMPC) strategy with a PID sliding function is proposed for synchronous DC-DC Buck converter. The model predictive control, along with digital sliding mode control (DSMC) is able to further reducing the chattering phenomenon, steady-state error, overshoot, and undershoot of the converter output voltage. The proposed control method implementation only requires output error voltage evaluation. The effectiveness of the proposed DSMPC is proved through simulation results executed by the MATLAB/SIMULINK software. These results demonstrate its performance is superior to DSMC. The selected synchronous Buck converter in this paper has 380 V input voltage and 48 V output voltage that can be applied in sections of DC distribution systems.


2015 ◽  
Vol 719-720 ◽  
pp. 417-425 ◽  
Author(s):  
Husan Ali ◽  
Xian Cheng Zheng ◽  
Shahbaz Khan ◽  
Waseem Abbas ◽  
Dawar Awan

The switched mode dc-dc converters are some of the most widely used power electronics circuits because of high conversion efficiency and flexible output voltage. Many methods have been developed for the control of dc-dc converters. This paper deals with design of controller for dc-dc buck converter using various control techniques. The first two control techniques are based on classical or linear control methods i.e. PI and PID control, while the other two control technique are based on non linear control method i.e. Sliding Mode Control (SMC) and Sliding Mode Proportional Integral Derivative Control (SMC-PID). The output voltage and the inductor current of the applied control techniques are analyzed and compared in transient and steady state region. Also the robustness of the buck converter system is tested for load changes and input voltage variations. Matlab/Simulink is used for the simulations. The detailed simulation results are presented, which compare the performance of the designed controllers for various cases. The results show that the non linear control for DC/DC Buck converter proves to be more robust than linear control especially when dynamic tests are applied.


2021 ◽  
Vol 9 (1) ◽  
pp. 127-137
Author(s):  
Muhammad Jamshed Abbas ◽  
Sohail Khalid ◽  
Muhammad Awais ◽  
Muhammad Abdul Rahman ◽  
Samir Brahim Belhaouari

Author(s):  
Ali Hussien Mary ◽  
Abbas Hussien Miry ◽  
Mohammed Hussein Miry

This paper proposed a novel adaptive robust backstepping control scheme for DC-DC buck converter subjected to external disturbance and system uncertainty. Uncertainty in the load resistance and the input voltage represent the big challenge in buck converter control. In this work, an adaptive estimator for matched and mismatched uncertainties based backstepping control is applied for DC-DC buck converter. The updating laws are determined based on the lyapunov theorem. Thus, the difference between the estimated parameters and actual parameters converges to zero. The proposed control method is compared with the conventional sliding mode control and integral sliding mode control. Simulation results demonstrate the effectiveness and robustness of the proposed controller.


Author(s):  
D. Sattianadan ◽  
G. R. Prudhvi Kumar ◽  
R. Sridhar ◽  
Kuthuru Vishwas Reddy ◽  
Bhumireddy Sai Uday Reddy ◽  
...  

As the requirement of power increases, the use of renewable energy resources has become prominent. The power collected from these energy resources needs to be converted using AC-DC or DC-DC converters. The control of DC-DC converters is a complex task due to its non-linearity in the converter introduced by the external changes such as source voltage, cable resistance and load variations. Converters are to be designed to obtain a well stabilized output voltage and load current for variable source voltages and load changes. Droop control method is the most abundantly used technique in controlling the parallel converters. The major limitations of the conventional droop control technique are circulating current issues and improper load sharing. The proposed work is to resolve these issues by integrating Sliding Mode Controller (SMC) with the converter in order to enhance the performance of DC microgrid. The entire control system was designed by taking the output voltage error as the control variables. Similarly, droop control with PI and PID were also performed and all these techniques were simulated and compared using MATLAB/Simulink. The experimental results show that the proposed sliding mode controller technique provides good overall performance and is suitable against variable voltage and load changes.


Sign in / Sign up

Export Citation Format

Share Document