scholarly journals Mesozoic history of the southeastern Tibetan plateau: Sediment provenance, paleoclimate, and surface elevation history

2016 ◽  
Author(s):  
Fei Shang
2019 ◽  
Vol 132 (1-2) ◽  
pp. 310-320 ◽  
Author(s):  
Junsheng Nie ◽  
Xueping Ren ◽  
Joel E. Saylor ◽  
Qingda Su ◽  
Brian K. Horton ◽  
...  

AbstractThe growth and deformation history of the Qilian-Nan Shan thrust belt bounding the NE Qaidam Basin figures importantly in testing models of Tibetan Plateau uplift during the India-Asia collision. However, debate exists about the onset of uplift and exhumation of the Qilian-Nan Shan, with timing estimates ranging from early Paleocene to late Miocene. Here we report integrated analyses of magnetostratigraphy, anisotropy of magnetic susceptibility, sediment provenance, and paleoclimate (using environmental magnetic parameters) for Cenozoic fluvio-lacustrine strata from the Dahonggou section south of the Qilian-Nan Shan. The results are interpreted to demonstrate an early Miocene (ca. 20 Ma) onset of sediment accumulation in this location, with clastic sediment derived initially from the southern Qimen Tagh highland. The sediment source then switched to the northern part of the Qilian Shan region after ca. 18.5 Ma, consistent with initial uplift and exhumation of the Qilian Shan. Thereafter, two additional provenance shifts reveal progressive southward propagation of deformation in the Qilian-Nan Shan. As a result of this southward growth of Qilian-Nan Shan topography, precipitation increased after ca. 11 Ma at the study site due to orographic interception of moisture from the south. This work improves our understanding of the depositional age, sediment provenance, and paleoclimate history of the Qaidam Basin and reveals a prolonged history of Qilian-Nan Shan deformation and uplift, which may have accelerated during the late Miocene.


2021 ◽  
pp. 1-15
Author(s):  
Yin Fu ◽  
Qiao Liu ◽  
Guoxiang Liu ◽  
Bo Zhang ◽  
Rui Zhang ◽  
...  

Abstract Most glaciers on the Tibetan Plateau have experienced continuous mass losses in response to global warming. However, the seasonal dynamics of glaciers on the southeastern Tibetan Plateau have rarely been reported in terms of glacier surface elevation and velocity. This paper presents a first attempt to explore the seasonal dynamics of the debris-covered Dagongba Glacier within the southeastern Tibetan Plateau. We use the multitemporal unoccupied aerial vehicle images collected over the lower ablation zone on 8 June and 17 October 2018, and 13 May 2019, and then perform an analysis concerning climatic fluctuations. The results reveal that the mean surface elevation decrease of the Dagongba Glacier during the warm season ( $2.81\pm 0.44$ m) was remarkably higher than the cold season ( $0.72\pm 0.45$ m). Particularly notable glacier surface elevation changes were found around supraglacial lakes and ice cliffs where ice ablation rates were $\sim$ 3 times higher than the average. In addition, a larger longitudinal decline of glacier surface velocity was observed in the warm season than that in the cold season. In terms of further comparative analysis, the Dagongba Glacier experienced a decrease in surface velocity between 1982–83 and 2018–19, with a decrease in the warm season possibly twice as large as that in the cold season.


2021 ◽  
Vol 811 ◽  
pp. 228871
Author(s):  
Chengyu Zhu ◽  
Guocan Wang ◽  
Philippe Hervé Leloup ◽  
Kai Cao ◽  
Gweltaz Mahéo ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Jiekun He ◽  
Siliang Lin ◽  
Jiatang Li ◽  
Jiehua Yu ◽  
Haisheng Jiang

AbstractThe Tibetan Plateau (TP) and surrounding regions have one of the most complex biotas on Earth. However, the evolutionary history of these regions in deep time is poorly understood. Here, we quantify the temporal changes in beta dissimilarities among zoogeographical regions during the Cenozoic using 4,966 extant terrestrial vertebrates and 1,278 extinct mammal genera. We identify ten present-day zoogeographical regions and find that they underwent a striking change over time. Specifically, the fauna on the TP was close to the Oriental realm in deep time but became more similar to the Palearctic realms more recently. The present-day zoogeographical regions generally emerged during the Miocene/Pliocene boundary (ca. 5 Ma). These results indicate that geological events such as the Indo-Asian Collision, the TP uplift, and the aridification of the Asian interior underpinned the evolutionary history of the zoogeographical regions surrounding the TP over different time periods.


Sign in / Sign up

Export Citation Format

Share Document