scholarly journals Analisis Risiko pada Usahatani Benih Bawang Putih di Kabupaten Karanganyar, Jawa Tengah

JURNAL PANGAN ◽  
2022 ◽  
Vol 30 (3) ◽  
pp. 199-216
Author(s):  
Hana Fadhillah Noor

Bawang putih merupakan komoditas penting namun Indonesia masih bergantung pada bawang putih impor. Bawang putih yang berkualitas baik dapat diperoleh dari benih yang baik pula. Pada usahatani benih bawang putih petani memerlukan perlakuan khusus untuk hasil panen yang disimpan sebagai benih bawang putih dan memiliki risiko lebih besar sehingga diperlukan mitigasi risiko yang tepat untuk usahatani benih bawang putih. Penelitian ini bertujuan untuk menganalisis risiko yang dihadapi oleh petani dan menganalisis strategi manajemen risiko yang paling tepat untuk mendapatkan keuntungan yang maksimal bagi petani. Metode analisis data dengan Failure Mode and Effect Analysis (FMEA). Analisis deskriptif untuk mengetahui mitigasi risiko yang paling tepat. Hasil analisis data berdasarkan nilai RPN tertinggi adalah serangan hama (9a), tanaman tidak subur karena gulma berlebihan (8b), serangan penyakit (9b), tanaman terlalu padat dan tanaman gulma berlebihan (8a) dan iklim serta cuaca yang tidak menentu (2a). Strategi manajemen risiko yang tergolong kritis yaitu pada risiko iklim dan cuaca tidak menentu menggunakan strategi penanggungan atau penahanan risiko (risk retention). Pada risiko tanah terlalu padat dan terlalu banyak gulma, risiko tanah kurang subur karena terlalu banyak gulma, risiko serangan hama dan risiko serangan penyakit digunakan strategi penghindaran risiko (risk avoidance).

2020 ◽  
Vol 1 (1) ◽  
pp. 162-173
Author(s):  
Dinesh Kumar Kushwaha ◽  
◽  
Dilbagh Panchal ◽  
Anish Sachdeva ◽  
◽  
...  

Failure Mode Effect Analysis (FMEA) is popular and versatile approach applicable to risk assessment and safety improvement of a repairable engineering system. This method encompasses various fields such as manufacturing, healthcare, paper mill, thermal power industry, software industry, services, security etc. in terms of its application. In general, FMEA is based on Risk Priority Number (RPN) score which is found by product of probability of Occurrence (O), Severity of failure (S) and Failure Detection (D). As human judgement is approximate in nature, the accuracy of data obtained from FMEA members depend on degree of subjectivity. The subjective knowledge of members not only contains uncertainty but hesitation too which in turn, affect the results. Fuzzy FMEA considers uncertainty and vagueness of the data/ information obtained from experts. In order to take into account, the hesitation of experts and vague concept, in the present work we propose integrated framework based on Intuitionistic Fuzzy- Failure Mode Effect Analysis (IF-FMEA) and IF-Technique for Order Preference by Similarity to Ideal Solution (IF-TOPSIS) techniques to rank the listed failure causes. Failure cause Fibrizer (FR) was found to be the most critical failure cause with RPN score 0.500. IF-TOPSIS has been implemented within IF-FMEA to compare and verify ranking results obtained by both the IF based approaches. The proposed method was presented with its application for examining the risk assessment of cutting system in sugar mill industry situated in western Uttar Pradesh province of India. The result would be useful for the plant maintenance manager to fix the best maintenance schedule for improving availability of cutting system.


2017 ◽  
Vol 32 (1) ◽  
pp. 28-37 ◽  
Author(s):  
Agustín Vázquez-Valencia ◽  
Andrés Santiago-Sáez ◽  
Bernardo Perea-Pérez ◽  
Elena Labajo-González ◽  
Maria Elena Albarrán-Juan

2020 ◽  
Vol 11 (1) ◽  
pp. 29-38
Author(s):  
Ján Kováč ◽  
Pavol Ťavoda ◽  
Jozef Krilek ◽  
Pavol Harvánek

AbstractThe article deals with the research of operational reliability of forest felling machines by FMEA method (Failure Mode and Effect Analysis). It describes collection of operational data and its analysis. It explains the procedure of realization for the method FMEA in the organization. Harvesters John Deere 1070D in the Company Lesy SR B. Bystrica were chosen for this research. The research was held in real operational conditions. Application of the FMEA method allows flexibility in case of unexpected situations and optimization of human potential abilities. FMEA tool is a tool preventing outages operational reliability and preventive tool for ensuring the maintenance of facilities. The method of information analysis mentioned below is simple ale precise enough for implementation in real working conditions.


Author(s):  
Elena Bartolomé ◽  
Paula Benítez

Failure Mode and Effect Analysis (FMEA) is a powerful quality tool, widely used in industry, for the identification of failure modes, their effects and causes. In this work, we investigated the utility of FMEA in the education field to improve active learning processes. In our case study, the FMEA principles were adapted to assess the risk of failures in a Mechanical Engineering course on “Theory of Machines and Mechanisms” conducted through a project-based, collaborative “Study and Research Path (SRP)” methodology. The SRP is an active learning instruction format which is initiated by a generating question that leads to a sequence of derived questions and answers, and combines moments of study and inquiry. By applying the FMEA, the teaching team was able to identify the most critical failures of the process, and implement corrective actions to improve the SRP in the subsequent year. Thus, our work shows that FMEA represents a simple tool of risk assesment which can serve to identify criticality in educational process, and improve the quality of active learning.


2021 ◽  
pp. 0734242X2110031
Author(s):  
Ana Pires ◽  
Paula Sobral

A complete understanding of the occurrence of microplastics and the methods to eliminate their sources is an urgent necessity to minimize the pollution caused by microplastics. The use of plastics in any form releases microplastics to the environment. Existing policy instruments are insufficient to address microplastics pollution and regulatory measures have focussed only on the microbeads and single-use plastics. Fees on the use of plastic products may possibly reduce their usage, but effective management of plastic products at their end-of-life is lacking. Therefore, in this study, the microplastic–failure mode and effect analysis (MP–FMEA) methodology, which is a semi-qualitative approach capable of identifying the causes and proposing solutions for the issue of microplastics pollution, has been proposed. The innovative feature of MP–FMEA is that it has a pre-defined failure mode, that is, the release of microplastics to air, water and soil (depending on the process) or the occurrence of microplastics in the final product. Moreover, a theoretical recycling plant case study was used to demonstrate the advantages and disadvantages of this method. The results revealed that MP–FMEA is an easy and heuristic technique to understand the failure-effect-causes and solutions for reduction of microplastics and can be applied by researchers working in different domains apart from those relating to microplastics. Future studies can include the evaluation of the use of MP–FMEA methodology along with quantitative methods for effective reduction in the release of microplastics.


2016 ◽  
Vol 33 (6) ◽  
pp. 830-851 ◽  
Author(s):  
Soumen Kumar Roy ◽  
A K Sarkar ◽  
Biswajit Mahanty

Purpose – The purpose of this paper is to evolve a guideline for scientists and development engineers to the failure behavior of electro-optical target tracker system (EOTTS) using fuzzy methodology leading to success of short-range homing guided missile (SRHGM) in which this critical subsystems is exploited. Design/methodology/approach – Technology index (TI) and fuzzy failure mode effect analysis (FMEA) are used to build an integrated framework to facilitate the system technology assessment and failure modes. Failure mode analysis is carried out for the system using data gathered from technical experts involved in design and realization of the EOTTS. In order to circumvent the limitations of the traditional failure mode effects and criticality analysis (FMECA), fuzzy FMCEA is adopted for the prioritization of the risks. FMEA parameters – severity, occurrence and detection are fuzzifed with suitable membership functions. These membership functions are used to define failure modes. Open source linear programming solver is used to solve linear equations. Findings – It is found that EOTTS has the highest TI among the major technologies used in the SRHGM. Fuzzy risk priority numbers (FRPN) for all important failure modes of the EOTTS are calculated and the failure modes are ranked to arrive at important monitoring points during design and development of the weapon system. Originality/value – This paper integrates the use of TI, fuzzy logic and experts’ database with FMEA toward assisting the scientists and engineers while conducting failure mode and effect analysis to prioritize failures toward taking corrective measure during the design and development of EOTTS.


Sign in / Sign up

Export Citation Format

Share Document