scholarly journals Annual variation of CH4 emissions from the middle taiga in West Siberian Lowland (2005–2009): a case of high CH4 flux and precipitation rate in the summer of 2007

Tellus B ◽  
2012 ◽  
Vol 64 (1) ◽  
pp. 17514 ◽  
Author(s):  
M. Sasakawa ◽  
A. Ito ◽  
T. MacHida ◽  
N. Tsuda ◽  
Y. Niwa ◽  
...  
2010 ◽  
Vol 10 (11) ◽  
pp. 27759-27776 ◽  
Author(s):  
M. Sasakawa ◽  
A. Ito ◽  
T. Machida ◽  
N. Tsuda ◽  
Y. Niwa ◽  
...  

Abstract. We have been conducting continuous measurements of CH4 and CO2 on a network of towers (JR-STATION: Japan–Russia Siberian Tall Tower Inland Observation Network) located in taiga, steppe, and wetland biomes of Siberia. Here we describe measurements from two forested bog sites, Karasevoe (KRS; 58°15′ N, 82°25′ E) and Demyanskoe (DEM; 59°47′ N, 70°52′ E), in West Siberia from 2005 to 2009. Although both CH4 and CO2 accumulation (ΔCH4 and ΔCO2) during nighttime (duration of 7 h beginning 21:30 LST) at KRS in July 2007 showed an anomalously high concentration, the higher ratios of ΔCH4/ΔCO2 compared with those in other years indicate that a considerably more CH4 flux occurred relative to the CO2 flux in response to large precipitation recorded in 2007 (~2.7 mm d−1 higher than the climatological 1979–1998 base). Estimated seasonal CH4 fluxes based on the ratio of ΔCH4/ΔCO2 and the CASA 3-hourly CO2 flux for the 2005–2009 period exhibited a seasonal variation with a maximum in July at both sites. Annual values of the CH4 emission from the forested bogs around KRS (approx. 7.8×104 km2) calculated from a process-based ecosystem model, Vegetation Integrative Simulator for Trace gases (VISIT), showed inter-annual variation of 0.54, 0.31, 0.94, 0.44, and 0.41 Tg CH4 yr−1 from 2005 to 2009, respectively, with the highest values in 2007. It was assumed in the model that the area flooded with water is proportional to the cumulative anomaly in monthly precipitation rate.


2012 ◽  
Vol 9 (12) ◽  
pp. 5199-5215 ◽  
Author(s):  
T. Li ◽  
Y. Huang ◽  
W. Zhang ◽  
Y.-Q. Yu

Abstract. Wetland loss and climate change are known to alter regional and global methane (CH4) budgets. Over the last six decades, an extensive area of marshland has been converted to cropland on the Sanjiang Plain in northeast China, and a significant increase in air temperature has also been observed there, while the impacts on regional CH4 budgets remain uncertain. Through model simulation, we estimated the changes in CH4 emissions associated with the conversion of marshland to cropland and climate change in this area. Model simulations indicated a significant reduction of 1.1 Tg yr−1 (0.7–1.8 Tg yr−1) from the 1950s to the 2000s in regional CH4 emissions. The cumulative reduction of CH4 from 1960 to 2009 was estimated to be ~36 Tg (24–57 Tg) relative to the 1950s, and marshland conversion and the climate contributed 86% and 14% of this change, respectively. Interannual variation in precipitation (linear trend with P > 0.2) contributed to yearly fluctuations in CH4 emissions, but the relatively lower amount of precipitation over the period 1960–2009 (47 mm yr−1 lower on average than in the 1950s) contributed ~91% of the reduction in the area-weighted CH4 flux. Global warming at a rate of 0.3 ° per decade (P < 0.001) has increased CH4 emissions significantly since the 1990s. Relative to the mean of the 1950s, the warming-induced increase in the CH4 flux has averaged 19 kg ha−1 yr−1 over the last two decades. In the RCP (Representative Concentration Pathway) 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 scenarios of the fifth IPCC assessment report (AR5), the CH4 fluxes are predicted to increase by 36%, 52%, 78% and 95%, respectively, by the 2080s compared to 1961–1990 in response to climate warming and wetting.


2019 ◽  
Vol 19 (6) ◽  
pp. 4041-4059 ◽  
Author(s):  
Carsten Schaller ◽  
Fanny Kittler ◽  
Thomas Foken ◽  
Mathias Göckede

Abstract. Methane (CH4) emissions from biogenic sources, such as Arctic permafrost wetlands, are associated with large uncertainties because of the high variability of fluxes in both space and time. This variability poses a challenge to monitoring CH4 fluxes with the eddy covariance (EC) technique, because this approach requires stationary signals from spatially homogeneous sources. Episodic outbursts of CH4 emissions, i.e. triggered by spontaneous outgassing of bubbles or venting of methane-rich air from lower levels due to shifts in atmospheric conditions, are particularly challenging to quantify. Such events typically last for only a few minutes, which is much shorter than the common averaging interval for EC (30 min). The steady-state assumption is jeopardised, which potentially leads to a non-negligible bias in the CH4 flux. Based on data from Chersky, NE Siberia, we tested and evaluated a flux calculation method based on wavelet analysis, which, in contrast to regular EC data processing, does not require steady-state conditions and is allowed to obtain fluxes over averaging periods as short as 1 min. Statistics on meteorological conditions before, during, and after the detected events revealed that it is atmospheric mixing that triggered such events rather than CH4 emission from the soil. By investigating individual events in more detail, we identified a potential influence of various mesoscale processes like gravity waves, low-level jets, weather fronts passing the site, and cold-air advection from a nearby mountain ridge as the dominating processes. The occurrence of extreme CH4 flux events over the summer season followed a seasonal course with a maximum in early August, which is strongly correlated with the maximum soil temperature. Overall, our findings demonstrate that wavelet analysis is a powerful method for resolving highly variable flux events on the order of minutes, and can therefore support the evaluation of EC flux data quality under non-steady-state conditions.


2018 ◽  
Author(s):  
Jinyang Wang ◽  
Hiroko Akiyama ◽  
Kazuyuki Yagi ◽  
Xiaoyuan Yan

Abstract. Rice cultivation has long been known as one of the dominant anthropogenic contributors to methane (CH4) emissions, yet there is still uncertainty when estimating its emissions at the global/regional scale. An increasing number of rice field measurements have been conducted globally, which allow us to assess the major variables controlling CH4 emissions and develop the region- and country-specific emission factors (EFs). Results shown that the CH4 flux from rice fields were closely related to organic amendment, water regime during and before the rice-growing season, soil properties and climate. The average CH4 flux from fields with single and multiple drainages were 71 % and 55 % of that from continuously flooded rice fields. The CH4 flux from fields that were flooded in the previous season were 2.4 and 2.7 times that from fields previously drained for a short and long season. Contrary to the previously reported optimum soil pH of around neutrality, paddy soils with pH of 5.0–5.5 gave the maximum CH4 emission. Rice straw applied at 6 t ha−1 shortly before rice transplanting can increase CH4 emission by 3.2 times, while it increases CH4 emission by only 1.6 times when applied in the previous season. The default EF was estimated to 1.19 kg CH4 ha−1 d−1 with a 95 % confidence interval of 0.80 to 1.76 kg CH4 ha−1 d−1 for continuously flooded rice fields without organic amendment and with a preseason water status of short drainage. The default EFs at sub-regional and country levels were also estimated. We conclude that these default EFs and scaling factors can be used to develop national or regional emission inventories.


2019 ◽  
Author(s):  
Camilo Rey-Sanchez ◽  
Gil Bohrer ◽  
Julie Slater ◽  
Yueh-Fen Li ◽  
Roger Grau-Andrés ◽  
...  

Abstract. Peatlands are a large source of methane (CH4) to the atmosphere, yet the uncertainty around the estimates of CH4 flux from peatlands is large. To better understand the spatial heterogeneity in temperate peatland CH4 emissions and their response to physical and biological drivers, we studied CH4 dynamics throughout the growing seasons of 2017 and 2018 in Flatiron Lake Bog, a kettle-hole peat bog in Ohio. The site is composed of six different hydro-biological zones: an open water zone, four concentric vegetation zones surrounding the open water, and a restored zone connected to the main bog by a narrow channel. At each of these locations, we monitored water level (WL), CH4 pore-water concentration at different peat depths, CH4 fluxes from the ground and from representative plant species using chambers, and microbial community composition with focus here on known methanogens and methanotrophs. Integrated CH4 emissions for the growing season were estimated as 315.4 ± 166 mg CH4 m−2 d−1 in 2017, and 362.3 ± 687 mg CH4 m−2 d−1 in 2018. Median CH4 emission was highest in the open water, then decreased and became more variable through the concentric vegetation zones as the WL dropped, with extreme emission hotspots observed in the Tamarack mixed woodlands (TMW), and low emissions in the restored zone (18.8–30.3 mg CH4 m−2 d−1). Generally, CH4 flux from above-ground vegetation was negligible compared to ground flux (


2019 ◽  
Author(s):  
Luke C. Jeffrey ◽  
Damien T. Maher ◽  
Scott Johnston ◽  
Kylie Maguire ◽  
Andrew D. L. Steven ◽  
...  

Abstract. Although wetlands represent the largest natural source of atmospheric CH4, large uncertainties remain regarding the global CH4 flux. Wetland hydrological oscillations contribute to this uncertainty, dramatically altering wetland area, water table height, soil redox potentials and CH4 emissions. This study compares both terrestrial and aquatic CH4 fluxes over two distinct seasons in both permanent and seasonal remediated freshwater wetlands in subtropical Australia. We account for aquatic CH4 diffusion and ebullition rates, and plant-mediated CH4 fluxes from three distinct vegetation communities, thereby examining seasonal, diurnal and intra-habitat variability. CH4 emission rates were related to underlying sediment geochemistry. For example, distinct negative relationships between Fe(III) and SO42− and CH4 fluxes were observed, whereas distinct positive trends occurred between CH4 emissions and Fe(II) / AVS, where sediment Fe(III) and SO42− were depleted. The highest CH4 emissions of the seasonal wetland were measured during flooded conditions and always during daylight hours, which is consistent with soil redox potential and temperature being important co-drivers of CH4 flux. The highest CH4 fluxes were consistently emitted from the permanent wetland (1.5 to 10.5 mmol m−2 d−1), followed by the Phragmites australis community within the seasonal wetland (0.8 to 2.3 mmol m−2 d−1), whilst the lowest CH4 fluxes came from a region of forested Juncus sp. (−0.01 to 0.1 mmol m−2 d−1) which also corresponded with the highest sedimentary Fe(III) and SO42−. We suggest that wetland remediation strategies should consider geochemical profiles to help to mitigate excessive and unwanted methane emissions, especially during early system recovery periods.


2021 ◽  
Author(s):  
Kyle B. Delwiche ◽  
Sara Helen Knox ◽  
Avni Malhotra ◽  
Etienne Fluet-Chouinard ◽  
Gavin McNicol ◽  
...  

Abstract. Methane (CH4) emissions from natural landscapes constitute roughly half of global CH4 contributions to the atmosphere, yet large uncertainties remain in the absolute magnitude and the seasonality of emission quantities and drivers. Eddy covariance (EC) measurements of CH4 flux are ideal for constraining ecosystem-scale CH4 emissions, including their seasonality, due to quasi-continuous and high temporal resolution of flux measurements, coincident measurements of carbon, water, and energy fluxes, lack of ecosystem disturbance, and increased availability of datasets over the last decade. Here, we 1) describe the newly published dataset, FLUXNET-CH4 Version 1.0, the first global dataset of CH4 EC measurements (available at https://fluxnet.org/data/fluxnet-ch4- community-product/). FLUXNET-CH4 includes half-hourly and daily gap-filled and non gap-filled aggregated CH4 fluxes and meteorological data from 79 sites globally: 42 freshwater wetlands, 6 brackish and saline wetlands, 7 formerly drained ecosystems, 7 rice paddy sites, 2 lakes, and 15 uplands. Then, we 2) evaluate FLUXNET-CH4 representativeness for freshwater wetland coverage globally, because the majority of sites in FLUXNET-CH4 Version 1.0 are freshwater wetlands and because freshwater wetlands are a substantial source of total atmospheric CH4 emissions; and 3) provide the first global estimates of the seasonal variability and seasonality predictors of freshwater wetland CH4 fluxes. Our representativeness analysis suggests that the freshwater wetland sites in the dataset cover global wetland bioclimatic attributes (encompassing energy, moisture, and vegetation-related parameters) in arctic, boreal, and temperate regions, but only sparsely cover humid tropical regions. Seasonality metrics of wetland CH4 emissions vary considerably across latitudinal bands. In freshwater wetlands (except those between 20° S to 20° N) the spring onset of elevated CH4 emissions starts three days earlier, and the CH4 emission season lasts 4 days longer, for each degree C increase in mean annual air temperature. On average, the onset of increasing CH4 emissions lags soil warming by one month, with very few sites experiencing increased CH4 emissions prior to the onset of soil warming. In contrast, roughly half of these sites experience the spring onset of rising CH4 emissions prior to the spring increase in gross primary productivity (GPP). The timing of peak summer CH4 emissions does not correlate with the timing for either peak summer temperature or peak GPP. Our results provide seasonality parameters for CH4 modeling, and highlight seasonality metrics that cannot be predicted by temperature or GPP (i.e., seasonality of CH4 peak). The FLUXNET-CH4 dataset provides an open-access resource for CH4 flux synthesis, has a range of applications, and is unique in that it includes coupled measurements of important CH4 drivers such as GPP and temperature. Although FLUXNET-CH4 could certainly be improved by adding more sites in tropical ecosystems and by increasing the number of site-years at existing sites, it is a powerful new resource for diagnosing and understanding the role of terrestrial ecosystems and climate drivers in the global CH4 cycle. All seasonality parameters are available at https://doi.org/10.5281/zenodo.4408468. Additionally, raw FLUXNET-CH4 data used to extract seasonality parameters can be downloaded from https://fluxnet.org/data/fluxnet-ch4-community-product/, and a complete list of the 79 individual site data DOIs is provided in Table 2 in the Data Availability section of this document.


2008 ◽  
Vol 5 (6) ◽  
pp. 4867-4896
Author(s):  
L. Zhang ◽  
D. Yu ◽  
X. Shi ◽  
L. Zhao ◽  
W. Ding ◽  
...  

Abstract. China's paddy rice accounts for about 22% of the world's rice fields, therefore it is crucial to accurately estimate the CH4 emissions at regional scale to gauge their contribution to global greenhouse gas effect. This paper reports an application of a biogeochemical model, DeNitrification and DeComposition or DNDC, for quantifying CH4 emissions from rice fields in Tai-Lake region of China by linking DNDC to a 1:50 000 soil database, which was derived from 1107 paddy soil profiles in the Second National Soil Survey of China in the 1980s–1990s. The modeled results estimate that the 2.34 M ha of paddy rice fields in Tai-Lake region emitted about CH4 of 5.67 Tg C for the period of 1982–2000, with the average CH4 flux ranged from 114 to 138 kg C ha−1y−1. The highest emission rate (659.24 kg C ha−1 y−1) occurred in the subgroup of "gleyed paddy soils", while the lowest (90.72 kg C ha−1y−1) were associated with the subgroup "degleyed paddy soils". The subgroup "hydromorphic paddy soils" accounted for about 52.82% of the total area of paddy soils, the largest of areas of all the soil subgroups, with the CH4 flux rate of 106.47 kg C ha−1y−1. On a sub-regional basis, the annual average CH4 flux in the Tai-Lake plain soil region and alluvial plain soil region was higher than that in low mountainous and hilly soil region and polder soil region. The model simulation was conducted with two databases using polygon or county as the basic unit. The county-based database contained soil information coarser than the polygon system built based on the 1:50 000 soil database. The modeled results with the two databases found similar spatial patterns CH4 emissions in Tai-Lake region. However, discrepancies exist between the results from the two methods, the relative deviation is −42.10% for the entire region, and the relative deviation ranged from −19.53% to 97.30% for most counties, which indicates that the more precise soil database was necessary to better simulate CH4 emissions from rice fields in Tai-Lake region using the DNDC model.


2014 ◽  
Vol 11 (6) ◽  
pp. 1519-1558 ◽  
Author(s):  
B. Ringeval ◽  
S. Houweling ◽  
P. M. van Bodegom ◽  
R. Spahni ◽  
R. van Beek ◽  
...  

Abstract. Tropical wetlands are estimated to represent about 50% of the natural wetland methane (CH4) emissions and explain a large fraction of the observed CH4 variability on timescales ranging from glacial–interglacial cycles to the currently observed year-to-year variability. Despite their importance, however, tropical wetlands are poorly represented in global models aiming to predict global CH4 emissions. This publication documents a first step in the development of a process-based model of CH4 emissions from tropical floodplains for global applications. For this purpose, the LPX-Bern Dynamic Global Vegetation Model (LPX hereafter) was slightly modified to represent floodplain hydrology, vegetation and associated CH4 emissions. The extent of tropical floodplains was prescribed using output from the spatially explicit hydrology model PCR-GLOBWB. We introduced new plant functional types (PFTs) that explicitly represent floodplain vegetation. The PFT parameterizations were evaluated against available remote-sensing data sets (GLC2000 land cover and MODIS Net Primary Productivity). Simulated CH4 flux densities were evaluated against field observations and regional flux inventories. Simulated CH4 emissions at Amazon Basin scale were compared to model simulations performed in the WETCHIMP intercomparison project. We found that LPX reproduces the average magnitude of observed net CH4 flux densities for the Amazon Basin. However, the model does not reproduce the variability between sites or between years within a site. Unfortunately, site information is too limited to attest or disprove some model features. At the Amazon Basin scale, our results underline the large uncertainty in the magnitude of wetland CH4 emissions. Sensitivity analyses gave insights into the main drivers of floodplain CH4 emission and their associated uncertainties. In particular, uncertainties in floodplain extent (i.e., difference between GLC2000 and PCR-GLOBWB output) modulate the simulated emissions by a factor of about 2. Our best estimates, using PCR-GLOBWB in combination with GLC2000, lead to simulated Amazon-integrated emissions of 44.4 ± 4.8 Tg yr−1. Additionally, the LPX emissions are highly sensitive to vegetation distribution. Two simulations with the same mean PFT cover, but different spatial distributions of grasslands within the basin, modulated emissions by about 20%. Correcting the LPX-simulated NPP using MODIS reduces the Amazon emissions by 11.3%. Finally, due to an intrinsic limitation of LPX to account for seasonality in floodplain extent, the model failed to reproduce the full dynamics in CH4 emissions but we proposed solutions to this issue. The interannual variability (IAV) of the emissions increases by 90% if the IAV in floodplain extent is accounted for, but still remains lower than in most of the WETCHIMP models. While our model includes more mechanisms specific to tropical floodplains, we were unable to reduce the uncertainty in the magnitude of wetland CH4 emissions of the Amazon Basin. Our results helped identify and prioritize directions towards more accurate estimates of tropical CH4 emissions, and they stress the need for more research to constrain floodplain CH4 emissions and their temporal variability, even before including other fundamental mechanisms such as floating macrophytes or lateral water fluxes.


2021 ◽  
Author(s):  
McKenzie A. Kuhn ◽  
Ruth K. Varner ◽  
David Bastviken ◽  
Patrick Crill ◽  
Sally MacIntyre ◽  
...  

Abstract. Methane (CH4) emissions from the Boreal and Arctic region are globally significant and highly sensitive to climate change. There is currently a wide range in estimates of high-latitude annual CH4 fluxes, where estimates based on land cover inventories and empirical CH4 flux data or process models (bottom-up approaches) generally are greater than atmospheric inversions (top-down approaches). A limitation of bottom-up approaches has been the lack of harmonization between inventories of site-level CH4 flux data and the land cover classes present in high-latitude spatial datasets. Here we present a comprehensive dataset of small-scale, surface CH4 flux data from 540 terrestrial sites (wetland and non-wetland) and 1247 aquatic sites (lakes and ponds), compiled from 189 studies. The Boreal-Arctic Wetland and Lake Methane Dataset (BAWLD-CH4) was constructed in parallel with a compatible land cover dataset, sharing the same land cover classes to enable refined bottom-up assessments. BAWLD-CH4 includes information on site-level CH4 fluxes, but also on study design (measurement method, timing, and frequency) and site characteristics (vegetation, climate, hydrology, soil, and sediment types, permafrost conditions, lake size and depth, and our determination of land cover class). The different land cover classes had distinct CH4 fluxes, resulting from definitions that were either based on or co-varied with key environmental controls. Fluxes of CH4 from terrestrial ecosystems were primarily influenced by water table position, soil temperature, and vegetation composition, while CH4 fluxes from aquatic ecosystems were primarily influenced by water temperature, lake size, and lake genesis. Models could explain more of the between-site variability in CH4 fluxes for terrestrial than aquatic ecosystems, likely due to both less precise assessments of lake CH4 fluxes and fewer consistently reported lake site characteristics. Analysis of BAWLD-CH4 identified both land cover classes and regions within the Boreal and Arctic domain where future studies should be focused, alongside methodological approaches. Overall, BAWLD-CH4 provides a comprehensive dataset of CH4 emissions from high-latitude ecosystems that are useful for identifying research opportunities, for comparison against new field data, and model parameterization or validation. BAWLD-CH4 can be downloaded from https://doi.org/10.18739/A27H1DN5S.


Sign in / Sign up

Export Citation Format

Share Document