Guide for determination of calorific values of solid, liquid and gaseous fuels (including definitions)

2015 ◽  
Keyword(s):  
Author(s):  
Daniel Mazzette Souza ◽  
Wellington Balmant ◽  
JOSÉ VIRIATO COELHO VARGAS ◽  
Fernando Bóçon

2019 ◽  
Vol 20 (5) ◽  
pp. 390-400 ◽  
Author(s):  
Nabil N. AL-Hashimi ◽  
Amjad H. El-Sheikh ◽  
Rania F. Qawariq ◽  
Majed H. Shtaiwi ◽  
Rowan AlEjielat

Background: The efficient analytical method for the analysis of nonsteroidal antiinflammatory drugs (NSAIDs) in a biological fluid is important for determining the toxicological aspects of such long-term used therapies. Methods: In the present work, multi-walled carbon nanotubes reinforced into a hollow fiber by chitosan sol-gel assisted-solid/ liquid phase microextraction (MWCNTs-HF-CA-SPME) method followed by the high-performance liquid chromatography-diode array detection (HPLC–DAD) was developed for the determination of three NSAIDs, ketoprofen, diclofenac, and ibuprofen in human urine samples. MWCNTs with various dimensions were characterized by various analytical techniques. The extraction device was prepared by immobilizing the MWCNTs in the pores of 2.5 cm microtube via chitosan sol-gel assisted technology while the lumen of the microtube was filled with few microliters of 1-octanol with two ends sealed. The extraction device was operated by direct immersion in the sample solution. Results: The main factors influencing the extraction efficiency of the selected NSAIDs have been examined. The method showed good linearity R2 ≥ 0.997 with RSDs from 1.1 to 12.3%. The limits of detection (LODs) were 2.633, 2.035 and 2.386 µg L-1, for ketoprofen, diclofenac, and ibuprofen, respectively. The developed method demonstrated a satisfactory result for the determination of selected drugs in patient urine samples and comparable results against reference methods. Conclusion: The method is simple, sensitive and can be considered as an alternative for clinical laboratory analysis of selected drugs.


Author(s):  
Shreya Suresh ◽  
Vinatha Viswanathan ◽  
Malarvizhi Angamuthu ◽  
Gnana Prakash Dhakshinamoorthy ◽  
Kannappan Panchamoorthy Gopinath ◽  
...  

1989 ◽  
Vol 157 ◽  
Author(s):  
P.A. Stolk ◽  
A. Polman ◽  
W.C. Sinke

ABSTRACTPulsed laser irradiation is used to induce epitaxial explosive crystallization of amorphous silicon layers buried in a (100) oriented crystalline matrix. This process is mediated by a self-propagating liquid layer. Time-resolved determination of the crystallization speed combined with numerical calculation of the interface temperature shows that freezing in silicon saturates at 16 m/s for large undercooling (> 130 K). A comparison between data and different models for melting and freezing indicates that the crystallization behavior at large undercooling can be described correctly if the rate-limiting factor is assumed to be diffusion in liquid Si at the solid/liquid interface.


Sign in / Sign up

Export Citation Format

Share Document