scholarly journals USE OF OPAL-CRYSTOBALITE-TRIDIMITE MICRO-FILLER IN DENSE AGGREGATE CONCRETE

Author(s):  
N. Lukutcova ◽  
A. Pykin ◽  
E. Chivikova

Opal-cristobalite-tridimite micro-filler (OCTMF) as a component of dense aggregate concrete (DAC), obtained by grinding of sedimentary siliceous rock – abiomorphic silicite fractions of 0.315-0.63 mm was studied considered. The chemical-mineral composition and microstructure of the of OCTMF particles were determined. Comparative analysis of the relationship between particle size distribution, average particle diameter, specific surface area of OCTMF particle and grinding period in shock-abrasive and cavitation mills was carried out. The conductometric express method was applied to study the effect of the OCTMF specific surface area on hydration activity of cement system. The optimal value of OCTMF specific surface area was (880–900 m2/kg), achieved as a result of cavitation dispersion for 5–10 minutes, that provides increasing in t hydration activity of cement system by 52–54 %. The effect of the consumption of components on strength of the DAC after 28 days of hardening was determined using mathematical statistics method. That allows predicting this parameter by varying the component composition of the concrete mix. An assessment of the OCTMF efficiency was made. It was established, the maximal effect of the OCTMF is at concentration up to 5 % (by wt. of cement), that provides an increasing the design compressive strength of DAC up to 126 %.

2021 ◽  
Author(s):  
Qiang Chen ◽  
Kai Chen ◽  
Feng Yu ◽  
Aixia Guo ◽  
Siqing Zou ◽  
...  

Abstract High surface area mesoporous silica (SiO2) nanospheres has been considered an ideal material for the catalytic, adsorption and drug delivery. However, synthesis of ultra-high specific surface area mesoporous silica nanoparticles with well-defined sphere structure and small particle size (< 200 nm) is still challenging. Here, a two-stream confined jet impingement continuous microchannel reactor is proposed to produce novel mesoporous silica nanospheres (MSNs) with ultra-high specific surface area (SSA) and abundant worm-like meso-porosity. The as-obtained MSNs with worm-like mesoporous structure were produced with average particle diameter of 142 ~ 207 nm, high SSA of 1347 ~ 1854 m2/g, total pore volume of 0.86 ~ 1.23 cm3/g and pore diameter of 2.6 ~ 3.3nm. Moreover, the shear force field in the microchannel reactor on the mesoscopic structure of MSNs was simulated by mesoscopic kinetics. Additionally, MSNs was used as the silicon source to synthesize lithium silicate (Li4SiO4), which enhanced carbon dioxide (CO2) adsorption of 27.18 wt% at 650 ℃.


2011 ◽  
Vol 194-196 ◽  
pp. 2065-2071
Author(s):  
Man Tong Jin ◽  
Cai Ju Huang ◽  
Zan Fang Jin

Fly ash from the municipal solid waste incineration (MSWI) which contains a small amount of heavy metals becomes a threat to human health and other living organisms once emitted into the environment, and has to be treated before disposal. This study focuses on the characteristics of the MSWI fly ash, which involve mineral composing, granularity distributing, specific surface area, pore diameter and pore volume of fly ash, leaching toxicity and chemical species of heavy metals. The experiment results confirm that the fly ashes are mainly composed of sylvite, halite, portlandite and calcium sulfate hydrate, with the the average particle diameter of 15.082 μm and the specific surface area of 4.290 m2/g, and the heavy metals such as Pb, Cu, Cr in the MSWI fly ash are mobile except Hg. This research provides critical information for appropriate MSWI fly ash treatment technology.


2012 ◽  
Vol 512-515 ◽  
pp. 1849-1853 ◽  
Author(s):  
Zhao Han ◽  
Hong Min Zhu

Nano-sized nickel powders were prepared through a wet chemical reduction, of NiCl2 by sodium in liquid ammonia at -45 °C, and a subsequent heat-treatment in vacuum at 300 °C. The prepared product was systematically characterized by X-ray diffraction (XRD), scan electron microscopy (SEM), transmission electron microscopy (TEM), and BET specific surface area measurement. The results show that the product was composed of nano-sized nickel particles, with average particle diameter of about 20 nm, and specific surface area of about 30 m2g-1. The possible formation mechanism of the nano-sized nickel powder was also discussed briefly.


Author(s):  
Hieр Nguyen Tien

The kinetics of metallic cobalt nanopowder synthesizing by hydrogen reduction from Co(OH)2 nanopowder under isothermal conditions were studied. Co(OH)2 nanopowder was prepared in advance by chemical deposition from aqueous solutions of Co(NO3)2 cobalt nitrate (10 wt.%) and NaOH alkali (10 wt.%) at room temperature, pH = 9 under continuous stirring. The hydrogen reduction of Co(OH)2 nanopowder under isothermal conditions was carried out in a tube furnace in the temperature range from 270 to 310 °C. The crystal structure and composition of powders was studied by X-ray phase analysis. The specific surface area of samples was measured using the BET method by low-temperature nitrogen adsorption. The average particle size of powders was determined by the measured specific surface area. Particles size characteristics and morphology were investigated by transmission and scanning electron microscopes. Kinetic parameters of Co(OH)2 hydrogen reduction under isothermal conditions were calculated using the Gray–Weddington model and Arrhenius equation. It was found that the rate constant of reduction at t = 310 °C is approximately 1.93 times higher than at 270 °C, so the process accelerates by 1.58 times for 40 min of reduction. The activation energy of cobalt nanopowder synthesizing from Co(OH)2 by hydrogen reduction is ~40 kJ/mol, which indicates a mixed reaction mode. It was shown that cobalt nanoparticles obtained by the hydrogen reduction of its hydroxide at 280 °C are aggregates of equiaxed particles up to 100 nm in size where individual particles are connected to several neighboring particles by contact isthmuses.


2021 ◽  
Vol 316 ◽  
pp. 689-693
Author(s):  
K.D. Naumov ◽  
V.G. Lobanov

The aim of this paper is to establish a regulatory change of zinc powders key physicochemical properties with varying electroextraction conditions. It was studied influence zinc concentration, alkali concentration and current density. Quantitative dependencies of zinc powders particle size and specific surface area from mentioned electroextraction parameters are shown. At increasing of zinc concentration, decreasing of NaOH concentration and decreasing of current density of powders particle size growth, correspondingly specific surface area is declined. It is indicated, that electrolytic zinc powders bulk density varies from 0.61 g/cm3 to 0.75 g/cm3 with a decrease of average particle size from 121 μm to 68 μm. In comparison, spherical powders bulk density used in various industries is currently 2.45-2.6 g/cm3. In all experiments, metal zinc content varied in the range of 91.1-92.5%, the rest - ZnO. To a greater extent, this indicator depends on powder washing quality from alkali and storage conditions.


2008 ◽  
Vol 587-588 ◽  
pp. 468-472
Author(s):  
J.M. González ◽  
José A. Rodríguez ◽  
Enrique J. Herrera

Nickel powder was dry-milled using a high-energy disc-oscillating mill. The average particle size increases and the specific surface area diminishes with milling time. Crystallite size decreases and microstrains increase, under the same conditions, as shown by X-ray analysis. At 120 min milling time, the crystallite size has a value of 17 nm, i.e., a nanostructured powder, with a perturbed lattice, is obtained. The above results have been compared with published data about the effects of milling on a ceramic powder. There is, in both cases, a general agreement concerning the changes produced in crystallite size. Nevertheless, opposite results are reached regarding particle size and specific surface area.


2016 ◽  
Vol 7 ◽  
pp. 721-732 ◽  
Author(s):  
Jacek Wojnarowicz ◽  
Roman Mukhovskyi ◽  
Elzbieta Pietrzykowska ◽  
Sylwia Kusnieruk ◽  
Jan Mizeracki ◽  
...  

Mn-doped zinc oxide nanoparticles were prepared by using the microwave solvothermal synthesis (MSS) technique. The nanoparticles were produced from a solution of zinc acetate dihydrate and manganese(II) acetate tetrahydrate using ethylene glycol as solvent. The content of Mn2+ in Zn1− x Mn x O ranged from 1 to 25 mol %. The following properties of the nanostructures were investigated: skeleton density, specific surface area (SSA), phase purity (XRD), lattice parameters, dopant content, average particle size, crystallite size distribution, morphology. The average particle size of Zn1− x Mn x O was determined using Scherrer’s formula, the Nanopowder XRD Processor Demo web application and by converting the specific surface area results. X-ray diffraction of synthesized samples shows a single-phase wurtzite crystal structure of ZnO without any indication of additional phases. Spherical Zn1− x Mn x O particles were obtained with monocrystalline structure and average particle sizes from 17 to 30 nm depending on the content of dopant. SEM images showed an impact of the dopant concentration on the morphology of the nanoparticles.


2010 ◽  
Vol 92 ◽  
pp. 163-169
Author(s):  
Hong Xia Qiao ◽  
Zhi Qiang Wei ◽  
Ming Ru Zhou ◽  
Zhong Mao He

Copper nanoparticles were successfully prepared in large scales by means of anodic arc discharging plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), BET equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED). The experiment results indicate that the crystal structure of the samples is fcc structure as same as that of the bulk materials. The specific surface area is is 11 m2/g, with the particle size distribution ranging from 30 to 90 nm, the average particle size about 67nm obtained from TEM and confirmed from XRD and BET results. The nanoparticles have uniform size, higher purity, narrow size distribution and spherical shape can be prepared by this convenient and effective method.


Clay Minerals ◽  
2012 ◽  
Vol 47 (3) ◽  
pp. 341-353 ◽  
Author(s):  
M. Ziadeh ◽  
B. Chwalka ◽  
H. Kalo ◽  
M. R. Schütz ◽  
J. Breu

AbstractThe potential of platy nanofillers like clays in polymer nanocomposites is mostly determined by their aspect ratio. The degree of improvement that may be achieved in respect to reinforcement, gas-barrier properties and flame retardancy critically depends on the aspect ratio. Thus, increasing the aspect ratio is highly desirable in order to explore the full potential of the clay filler. Mechanical shear stress as generated in the grinding chamber of a stirred media mill (ball mill) induced an efficient exfoliation of highly hydrated and therefore ‘shear-labile’ synthetic Mg-fluorohectorite in aqueous dispersion. The attainable degree of exfoliation can be tuned and controlled through the shear forces applied by changing process parameters such as solid content and grinding media diameter. Characterization and evaluation of the exfoliation efficiency during milling was achieved by combining and cross-validating data obtained by powder X-ray diffraction (XRD), static light scattering (SLS), specific surface area measurements applying the Brunauer-Emmett-Teller (BET) equation, and scanning electron microscopy (SEM). This led to the identification of optimal processing parameters, allowing for control of the degree of exfoliation and, consequently, the aspect ratio of the nanoplatelets. Not surprisingly, besides exfoliation, increasing the magnitude of the shear stress also resulted in some reduction in platelet size.The clay platelets obtained showed a high average aspect ratio (>600), several times greater than that of original synthetic fluorohectorite. The increase of aspect ratio was reflected in a significant enhancement of both specific surface area and cation exchange capacity (CEC) of the external basal surfaces. This method has substantial advantages compared to microfluidizer processing with respect to feasibility, batch size and particle diameter size preservation. The exfoliated nanoplatelets obtained by milling have great potential to improve mechanical properties of polymer layered silicate nanocomposites (PLSN).


Sign in / Sign up

Export Citation Format

Share Document