Analysis of the solar spectrum : Results for the range λ 6116.5 -λ 6132.0

1975 ◽  
Vol 61 (1) ◽  
pp. 835-840
Author(s):  
Nicole Baeck
Keyword(s):  
1977 ◽  
Vol 63 (1) ◽  
pp. 499-505
Author(s):  
Herman Steyaert ◽  
Paul Dingens ◽  
Nicole Baeck
Keyword(s):  

1970 ◽  
Vol 36 ◽  
pp. 271-273
Author(s):  
B. B. Jones ◽  
B. C. Boland ◽  
R. Wilson ◽  
S. T. F. Engstrom

A high-resolution solar spectrum in the range 2000–2200 Å was obtained in a recent flight of a sunpointing Skylark rocket. This was launched at 04.21 hr UT on April 22, 1969 from Woomera and reached an apogee of 178 km. An optical alignment system operating on the main vehicle pointing system gave a net stabilisation of ±3 arc sec in the position of the solar image relative to the spectrograph slit. The slit, of length 1.0 mm, was set in the north-east quadrant parallel to and 5 arc min from the north/south axis, its lower edge being 1 arc min from the equator. The roll control of ±2.5° was provided entirely by the standard Elliott Bros. type of vehicle stabilisation.


2020 ◽  
Vol 14 (6) ◽  
pp. 997-1005 ◽  
Author(s):  
Yu Cao ◽  
Xinyun Zhu ◽  
Xingyu Tong ◽  
Jing Zhou ◽  
Jian Ni ◽  
...  

2015 ◽  
Vol 8 (3) ◽  
pp. 1593-1604 ◽  
Author(s):  
C. Bassani ◽  
C. Manzo ◽  
F. Braga ◽  
M. Bresciani ◽  
C. Giardino ◽  
...  

Abstract. Hyperspectral imaging provides quantitative remote sensing of ocean colour by the high spectral resolution of the water features. The HICO™ (Hyperspectral Imager for the Coastal Ocean) is suitable for coastal studies and monitoring. The accurate retrieval of hyperspectral water-leaving reflectance from HICO™ data is still a challenge. The aim of this work is to retrieve the water-leaving reflectance from HICO™ data with a physically based algorithm, using the local microphysical properties of the aerosol in order to overcome the limitations of the standard aerosol types commonly used in atmospheric correction processing. The water-leaving reflectance was obtained using the HICO@CRI (HICO ATmospherically Corrected Reflectance Imagery) atmospheric correction algorithm by adapting the vector version of the Second Simulation of a Satellite Signal in the Solar Spectrum (6SV) radiative transfer code. The HICO@CRI algorithm was applied on to six HICO™ images acquired in the northern Mediterranean basin, using the microphysical properties measured by the Acqua Alta Oceanographic Tower (AAOT) AERONET site. The HICO@CRI results obtained with AERONET products were validated with in situ measurements showing an accuracy expressed by r2 = 0.98. Additional runs of HICO@CRI on the six images were performed using maritime, continental and urban standard aerosol types to perform the accuracy assessment when standard aerosol types implemented in 6SV are used. The results highlight that the microphysical properties of the aerosol improve the accuracy of the atmospheric correction compared to standard aerosol types. The normalized root mean square (NRMSE) and the similar spectral value (SSV) of the water-leaving reflectance show reduced accuracy in atmospheric correction results when there is an increase in aerosol loading. This is mainly when the standard aerosol type used is characterized with different optical properties compared to the local aerosol. The results suggest that if a water quality analysis is needed the microphysical properties of the aerosol need to be taken into consideration in the atmospheric correction of hyperspectral data over coastal environments, because aerosols influence the accuracy of the retrieved water-leaving reflectance.


2021 ◽  
Vol 163 ◽  
pp. 1773-1785
Author(s):  
Nima Talebzadeh ◽  
Mohsen Rostami ◽  
Paul G. O’Brien

Solar Physics ◽  
2021 ◽  
Vol 296 (3) ◽  
Author(s):  
Ryan O. Milligan

AbstractAs the Lyman-alpha (Ly$\upalpha $ α ) line of neutral hydrogen is the brightest emission line in the solar spectrum, detecting increases in irradiance due to solar flares at this wavelength can be challenging due to the very high background. Previous studies that have focused on the largest flares have shown that even these extreme cases generate enhancements in Ly$\upalpha $ α of only a few percent above the background. In this study, a superposed-epoch analysis was performed on ≈8500 flares greater than B1 class to determine the contribution that they make to changes in the solar EUV irradiance. Using the peak of the 1 – 8 Å X-ray emission as a fiducial time, the corresponding time series of 3123 B- and 4972 C-class flares observed in Ly$\upalpha $ α emission by the EUV Sensor on the Geostationary Operational Environmental Satellite 15 (GOES-15) were averaged to reduce background fluctuations and improve the flare signal. The summation of these weaker events showed that they produced a 0.1 – 0.3% enhancement to the solar Ly$\upalpha $ α irradiance on average. For comparison, the same technique was applied to 453 M- and 31 X-class flares, which resulted in a 1 – 4% increase in Ly$\upalpha $ α emission. Flares were also averaged with respect to their heliographic angle to investigate any potential center-to-limb variation. For each GOES class, the relative enhancement in Ly$\upalpha $ α at the flare peak was found to diminish for flares that occurred closer to the solar limb due to the opacity of the line and/or foreshortening of the footpoints. One modest event included in the study, a C6.6 flare, exhibited an unusually high increase in Ly$\upalpha $ α of 7% that may have been attributed to a failed filament eruption. Increases of this magnitude have hitherto only been associated with a small number of X-class flares.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 368
Author(s):  
Lisdelys González-Rodríguez ◽  
Amauri Pereira de Oliveira ◽  
Lien Rodríguez-López ◽  
Jorge Rosas ◽  
David Contreras ◽  
...  

Ultraviolet radiation is a highly energetic component of the solar spectrum that needs to be monitored because is harmful to life on Earth, especially in areas where the ozone layer has been depleted, like Chile. This work is the first to address the long-term (five-year) behaviour of ultraviolet erythemal radiation (UVER) in Santiago, Chile (33.5° S, 70.7° W, 500 m) using in situ measurements and empirical modelling. Observations indicate that to alert the people on the risks of UVER overexposure, it is necessary to use, in addition to the currently available UV index (UVI), three more erythema indices: standard erythemal doses (SEDs), minimum erythemal doses (MEDs), and sun exposure time (tery). The combination of UVI, SEDs, MEDs, and tery shows that in Santiago, individuals with skin types III and IV are exposed to harmfully high UVER doses for 46% of the time that UVI indicates is safe. Empirical models predicted hourly and daily values UVER in Santiago with great accuracy and can be applied to other Chilean urban areas with similar climate. This research inspires future advances in reconstructing large datasets to analyse the UVER in Central Chile, its trends, and its changes.


2021 ◽  
Vol 13 (8) ◽  
pp. 1454
Author(s):  
Anatoliy A. Nusinov ◽  
Tamara V. Kazachevskaya ◽  
Valeriya V. Katyushina

Modeling the upper atmosphere and ionospheres on the basis of a mathematical description of physical processes requires knowledge of ultraviolet radiation fluxes from the Sun as an integral part of the model. Aeronomic models of variations in the radiation flux in the region of extreme (EUV) and far (FUV) radiation, based mainly on the data of the last TIMED mission measurements of the solar spectrum, are proposed. The EUVT model describes variations in the 5–105 nm spectral region, which are responsible for the ionization of the main components of the earth’s atmosphere. The FUVT model describes the flux changes in the 115–242 nm region, which determines heating of the upper atmosphere and the dissociation of molecular oxygen. Both models use the intensity of the hydrogen Lyman-alpha line as an input parameter, which can currently be considered as one of the main indices of solar activity and can be measured with relatively simpler photometers. A comparison of the results of model calculations with observations shows that the model error does not exceed 1–2% for the FUVT model, and 5.5% for EUVT, which is sufficient for calculating the parameters of the ionosphere and thermosphere.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shiv Priyam Raghuraman ◽  
David Paynter ◽  
V. Ramaswamy

AbstractThe observed trend in Earth’s energy imbalance (TEEI), a measure of the acceleration of heat uptake by the planet, is a fundamental indicator of perturbations to climate. Satellite observations (2001–2020) reveal a significant positive globally-averaged TEEI of 0.38 ± 0.24 Wm−2decade−1, but the contributing drivers have yet to be understood. Using climate model simulations, we show that it is exceptionally unlikely (<1% probability) that this trend can be explained by internal variability. Instead, TEEI is achieved only upon accounting for the increase in anthropogenic radiative forcing and the associated climate response. TEEI is driven by a large decrease in reflected solar radiation and a small increase in emitted infrared radiation. This is because recent changes in forcing and feedbacks are additive in the solar spectrum, while being nearly offset by each other in the infrared. We conclude that the satellite record provides clear evidence of a human-influenced climate system.


Sign in / Sign up

Export Citation Format

Share Document