scholarly journals Numbers of Taiga Bean Geese Anseer f. fabalis utilizing the western and central flyways through Sweden during springtime 2007–2015

Ornis Svecica ◽  
2015 ◽  
Vol 25 (3–4) ◽  
pp. 153-165
Author(s):  
Ulf Skyllberg

Bean Geese Anser fabalis were counted at all known spring staging sites in south-central Sweden within the time window when geese migrating along the western and central flyways had left their wintering grounds in Denmark and southernmost Sweden, but before they had crossed the Bothnian Bay to Finland. Reliable counts were obtained for seven years 2007–2015: 57,000 in 2007, 55,500 in 2008, 49,300 in 2009, 46,900 in 2011, 47,400 in 2012, 53,900 in 2014, and 60,200 in 2015. The increase between 2011 and 2015 was significant and may be related to recently decreased hunting pressure in Finland. Subtraction of an estimated 4,000 Tundra Bean Geese Anser f. rossicus and addition of two small populations of Taiga Bean Geese Anser f. fabalis wintering in the UK and in NW Jutland that were likely missed in the counts, yielded a total estimate of 44,200–57,500 Taiga Bean Geese utilizing the western and central flyways. Based on these counts, combined with data on geese wintering east of the Baltic Sea, I estimate the world population to 68,000 Taiga Bean Geese in 2015.

2019 ◽  

Since prehistoric times, the Baltic Sea has functioned as a northern mare nostrum — a crucial nexus that has shaped the languages, folklore, religions, literature, technology, and identities of the Germanic, Finnic, Sámi, Baltic, and Slavic peoples. This anthology explores the networks among those peoples. The contributions to Contacts and Networks in the Baltic Sea Region: Austmarr as a Northern mare nostrum, ca. 500-1500 ad address different aspects of cultural contacts around and across the Baltic from the perspectives of history, archaeology, linguistics, literary studies, religious studies, and folklore. The introduction offers a general overview of crosscultural contacts in the Baltic Sea region as a framework for contextualizing the volume’s twelve chapters, organized in four sections. The first section concerns geographical conceptions as revealed in Old Norse and in classical texts through place names, terms of direction, and geographical descriptions. The second section discusses the movement of cultural goods and persons in connection with elite mobility, the slave trade, and rune-carving practice. The third section turns to the history of language contacts and influences, using examples of Finnic names in runic inscriptions and Low German loanwords in Finnish. The final section analyzes intercultural connections related to mythology and religion spanning Baltic, Finnic, Germanic, and Sámi cultures. Together these diverse articles present a dynamic picture of this distinctive part of the world.


2009 ◽  
Vol 18 (3-4) ◽  
pp. 440-459 ◽  
Author(s):  
K. HYYTIÄINEN ◽  
H. AHTIAINEN ◽  
J. HEIKKILÄ

This study introduces a prototype model for evaluating measures to abate agricultural nutrients in the Baltic Sea from a Finnish national perspective. The stochastic simulation model integrates nutrient dynamics of nitrogen and phosphorus in the sea basins adjoining the Finnish coast, nutrient loads from land and other sources, benefits from nutrient abatement (in the form of recreation and other ecosystem services) and the costs of agricultural abatement activities. The aim of the study is to present the overall structure of the model and to demonstrate its potential using preliminary parameters. The model is made flexible for further improvements in all of its ecological and economic components. The results of a sensitivity analysis suggest that investments in reducing the nutrient load from arable land in Finland would become profitable only if the neighboring countries in the northern Baltic committed themselves to similar reductions. Environmental investments for improving water quality yield the highest returns for the Bothnian Bay and the Gulf of Finland, with smaller returns for the Bothnian Sea. Somewhat surprisingly, in the Bothnian Bay the abatement activities become profitable from the national viewpoint, because the riverine loads from Finland represent a high proportion of the total nutrient loads. In the Gulf of Finland, this proportion is low, but the size of the coastal population benefiting from improved water quality is high.;


2007 ◽  
Vol 13 ◽  
pp. 61-64 ◽  
Author(s):  
Zyad K. Al-Hamdani ◽  
Johnny Reker ◽  
Jørgen O. Leth ◽  
Anu Reijonen ◽  
Aarno T. Kotilainen ◽  
...  

The Baltic Sea is one of the largest brackish water bodies in the world (Segerstråle 1957) with a number of basins varying from almost fresh water in the northern part of the Bothnian Bay via the more brackish conditions in the southern part to the saline waters of the Kattegat. The Baltic Sea is subject to severe environmental degradation caused by commercial and leisure activities, including fisheries, dredging, tourism, coas t a l development and land-based pollution sources. This causes severe pressures on vulnerable marine habitats and natural re- sources, and a tool for aiding marine management is therefore strongly needed. The marine landscape concept presented by Roff &Taylor (2000) is based on the use of available broad-scale geological, physical and hydrographical data to prepare ecologically meaningful maps for areas with little or no biological information. The concept, which was elaborated by Day & Roff (2000) was applied in UK waters (Connor et al. 2006) before it was adopted by the BALANCE project described here. The aim of developing marine landscape maps is to characterise the marine environment of the Baltic Sea region (the Baltic Sea together with the Kattegat) using geophysical and hydrographical parameters. Such maps can be applied, for example, to an assessment of the Baltic-wide network of marine protected areas, and thus provide a sustainable ecosystem-based approach to the protection of the marine environment from human activities, and contribute to the conservation of marine biodiversity. The BALANCE project is based on transnational and cross-sectoral co-operation with participants from nine countries surrounding the Baltic Sea as well as Norway (Fig. 1), and is partially financed by the European Union through the BSR INTERREG IIIB programme.


Author(s):  
Marcello Trovati

A pandemic is a disease that spreads across countries or continents. It affects more people and takes more lives than an epidemic. Examples are Influenza A, HIV-1, Ebola, SARS, pneumonic plague. Currently, the ongoing COVID-19 pandemic is one of the major health emergencies in decades that has affected almost every country in the world. As of 23 October 2020, it has caused an outbreak with more than 40 million confirmed cases, and more than 1 million reported deaths globally. Also, as of 23 October 2020, the reproduction number (R) and growth rate of coronavirus (COVID-19) in the UK range is 1.2-1.4. Due to the unavailability of an effective treatment (or vaccine) and insufficient evidence regarding the transmission mechanism of the epidemic, the world population is currently in a vulnerable position. This chapter explores data analytics epidemic modelling and human dynamics approaches for pandemic outbreaks.


Author(s):  
Silvija Ozola

The port city Liepaja had gained recognition in Europe and the world by World War I. On the coast of the Baltic Sea a resort developed, to which around 1880 a wide promenade – Kurhaus Avenue provided a functional link between the finance and trade centre in Old Liepaja. On November 8, 1890 the building conditions for Liepaja, developed according to the sample of Riga building regulations, were partly confirmed: the construction territory was divided into districts of wooden and stone buildings. In 1888 after the reconstruction of the trade canal Liepaja became the third most significant port in the Russian Empire. The railway (engineer Gavriil Semikolenov; 1879) and metal bridges (engineers Huten and Ruktesel; 1881) across the trade canal provided the link between Old Liepaja and the industrial territory in New Liepaja, where industrial companies and building of houses developed in the neighbourhood of the railway hub, but in spring 1899 the construction of a ten-kilometre long street electric railway line and power station was commenced. Since September 25 the tram movement provided a regular traffic between Naval Port (Latvian: Karosta), the residential and industrial districts in New Liepaja and the city centre in Old Liepaja. In 1907 the construction of the ambitious “Emperor Alexander’s III Military Port” and maritime fortress was completed, but already in the following year the fortress was closed. In the new military port there were based not only the navy squadrons of the Baltic Sea, but also the Pacific Ocean before sending them off in the war against Japan. The development of Liepaja continued: promenades, surrounded by Dutch linden trees, joined squares and parks in one united plantation system. On September 20, 1910 Liepaja City Council made a decision to close the New Market and start modernization of the city centre. In 1911 Liepaja obtained its symbol – the Rose Square. In the independent Republic of Latvia the implementation of the agrarian reform was started and the task to provide inhabitants with flats was set. Around 1927 in the Technical Department of Liepaja City the development of the master-plan was started: the territory of the city was divided into the industrial, commercial, residential and resort zone, which was greened. It was planned to lengthen Lord’s (Latvian: Kungu) Street with a dam, partly filling up Lake Liepaja in order to build the water-main and provide traffic with the eastern bank. The passed “Law of City Lands” and “Regulations for City Construction and Development of Construction Plans and Development Procedure” in Latvia Republic in 1928 promoted a gradual development of cities. In 1932 Liepaja received the radio transmitter. On the northern outskirts a sugar factory was built (architect Kārlis Bikše; 1933). The construction of the city centre was supplemented with the Latvian Society House (architect Kārlis Blauss and Valdis Zebauers; 1934-1935) and Army Economical Shop (architect Aleksandrs Racenis), as well as the building of a pawnshop and saving bank (architect Valdis Zebauers; 1936-1937). The hotel “Pēterpils”, which became the property of the municipality in 1936, was renamed as the “City Hotel” and it was rebuilt in 1938. In New Liepaja the Friendly Appeal Elementary school was built (architect Karlis Bikše), but in the Naval Officers Meeting House was restored and it was adapted for the needs of the Red Cross Bone Tuberculosis Sanatorium (architect Aleksandrs Klinklāvs; 1930-1939). The Soviet military power was restored in Latvia and it was included in the Union of Soviet Socialist Republics. During the World War II buildings in the city centre around the Rose Square and Great (Latvian: Lielā) Street were razed. When the war finished, the “Building Complex Scheme for 1946-1950” was developed for Liepaja. In August 1950 the city was announced as closed: the trade port was adapted to military needs. Neglecting the historical planning of the city, in 1952 the restoration of the city centre building was started, applying standard projects. The restoration of Liepaja City centre building carried out during the post-war period has not been studied. Research goal: analyse restoration proposals for Liepaja City centre building, destroyed during World War II, and the conception appropriate to the socialism ideology and further development of construction.


2016 ◽  
Vol 73 (7) ◽  
pp. 1739-1749 ◽  
Author(s):  
Zeynep Pekcan-Hekim ◽  
Anna Gårdmark ◽  
Agnes M. L. Karlson ◽  
Pirkko Kauppila ◽  
Mikaela Bergenius ◽  
...  

Abstract Climate change, eutrophication, and fishing are main pressures associated with changes in the abiotic and biotic environment in several sub-basins of the Baltic Sea. Identifying the nature of such changes is of relative importance for fisheries and environmental management. The Bothnian Bay is the northernmost sub-basin in the Baltic Sea and the responses of the foodweb to long-term changes in combined pressures have not been investigated. In this study, we explore long-term changes in the Bothnian Bay foodweb, represented by key species across all trophic levels over the past 34 years, and identify potential environmental and anthropogenic drivers. The results indicate that salinity is the most important driver to explain changes in the composition of the offshore biota in the Bothnian Bay. These changes are probably driven by indirect effects of salinity rather than bottom-up effects. A decline in the herring spawning-stock biomass was most plausibly attributed to an increased competition for food due to a parallel increase in vendace, which uses the same food resources (zooplankton and zoobenthos) and may benefit from declining salinity due to its limnic origin. A strong increase in the abundance of grey seal and ringed seal populations was seen in the late 2000s but was not related to any of the pressure variables analysed. Temperature and nutrients were not identified as important drivers of changes in the overall biota. Our study explores correlative relationships between variables and identifies potential interactions in the foodweb to generate hypotheses for further studies.


2014 ◽  
Vol 38 (1-2) ◽  
pp. 31-42
Author(s):  
Janusz Błaszkowski ◽  
Iwona Adamska ◽  
Beata Czerniawska

Morphological properties of spores and mycorrhizae of <i>Acaulospora scrobiculata</i> and <i>Glomus versiforme</i>, arbuscular fungi of the phylum <i>Glomeromycom</i>, were described and illustrated. The two species were revealed in trap cultures containing root-rhizosphere mixlures of plants colonizing maritime dunes of the Baltic Sea located in north-western Poland and then propagated in one-species cultures to characterize properties of their mycorrhizae. <i>Acaulospona scrobiculata</i> had not previously been found in Poland, and the only earlier finding of <i>Gl. versiforme</i> in this country comes from the year 1912. The known distribution of the two fungal species in the world is also presented.


2019 ◽  
Author(s):  
Thomas Neumann ◽  
Herbert Siegel ◽  
Matthias Moros ◽  
Monika Gerth ◽  
Madline Kniebusch ◽  
...  

Abstract. The Baltic Sea is a semi-enclosed, brackish water sea in northern Europe. The deep basins of the central Baltic Sea regularly show hypoxic conditions. In contrast, the northern parts of the Baltic Sea, the Bothnian Sea and Bay, are well oxygenated. Lateral inflows or a ventilation due to convection are possible mechanisms for high oxygen concentrations in the deep water of the northern Baltic Sea. Owing to the high latitudes of the northern Baltic, this region is regularly covered by sea ice during the winter season. In March 2017, the RV Maria S. Merian was for two days in the Bothnian Bay collecting ice core samples, brine water, and CTD profiles. The bulk sea ice salinity was on average 0.6 g/kg and in brine samples, a salinity of 11.5 g/kg and 17.8 g/kg have been measured. At one station, the CTD profiles indicated a recent ventilation event of the deep water. A water mass analysis showed that the ventilation is most probably due to mixing of Bothnian Sea and Bothnian Bay surface water which results in sufficient dense water able to replace older bottom water. However, the high salinity of brine provides the potential for forming dense bottom water masses as well.


2020 ◽  
Vol 49 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Joanna N. Izdebska ◽  
Leszek Rolbiecki ◽  
Karolina Cierocka ◽  
Iwona Pawliczka

AbstractThe present study describes a finding of the demodecid mite Demodex phocidi in the seal Phoca vitulina in the Baltic Sea. This is the first identification in Europe and the second in the world. This is also the first observation of the Demodecidae family in the pinnipeds outside North America. A high density of demodecid mites was observed in the skin of the examined seal, but no symptoms of parasitosis were observed. Our findings also supplement the taxonomic description and morphometry of D. phocidi.


Sign in / Sign up

Export Citation Format

Share Document