Faculty Opinions recommendation of Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC).

Author(s):  
Alan Fanning
2011 ◽  
Vol 1 (1) ◽  
pp. 16 ◽  
Author(s):  
S. Brijesh ◽  
Pundarikakshudu Tetali ◽  
Tannaz J. Birdi

Diarrhea is a major health concern in developing countries with enteropathogenic <em>Escherichia coli</em> (EPEC) being a leading cause of infantile diarrhea. Much of the pathology of EPEC infection is due to the inflammatory responses of infected intestinal epithelium through secretion of pro-inflammatory cytoki - nes such as interleukin (IL)-8. With medicinal plants gaining popularity as prospective antidiarrheal agents, we aimed to evaluate the effect of anti-diarrheal medicinal plants on secretion of IL-8 by epithelial cells in response to EPEC infection. The effect of the decoctions of four anti-diarrheal medicinal plants viz. <em>Aegle marmelos</em>, <em>Cyperus rotundus</em>, <em>Psidium guajava</em> and <em>Zingiber officinale</em> was studied on secretion of IL-8 by a human colon adenocarcinoma cell line, HT-29 infected with <em>E. coli </em>E2348/69. Two protocols were used viz. pre-incubation and post-incubation. The data obtained demonstrated that out of the four plants used, only <em>P. guajava</em> decreased secretion of IL-8 in the post-incubation protocol although in the pre-incubation protocol an increase was observed. A similar increase was seen with <em>C. rotundus</em> in the preincubation protocol. No effect on IL-8 secretion was observed with <em>A. marmelos</em> and <em>Z. officinale</em> in both protocols and with <em>C. rotundus </em>in the post-incubation protocol. The post-incubation protocol, in terms of clinical relevance, indicates the effect of the plant decoctions when used as treatment. Hence <em>P. guajava</em> may be effective in controlling the acute inflammatory response of the intestinal epithelial cells in response to EPEC infection.<p> </p>


2019 ◽  
Vol 29 (1-6) ◽  
pp. 91-100
Author(s):  
Dorna Khoobbakht ◽  
Shohreh Zare Karizi ◽  
Mohammad Javad  Motamedi ◽  
Rouhollah Kazemi ◽  
Pooneh Roghanian ◽  
...  

Enterotoxigenic <i>Escherichia coli</i> (ETEC) is the most common agent of diarrhea morbidity in developing countries. ETEC adheres to host intestinal epithelial cells via various colonization factors. The CooD and CotD proteins play a significant role in bacteria binding to the intestinal epithelial cells as adhesin tip subunits of CS1 and CS2 pili. The purpose here was to design a new construction containing <i>cooD</i> and <i>cotD</i> genes and use several types of bioinformatics software to predict the structural and immunological properties of the designed antigen. The fusion gene was synthesized with codon bias of <i>E. coli</i> in order to increase the expression level of the protein. The amino acid sequences, protein structure, and immunogenicity properties of potential antigens were analyzed in silico. The chimeric protein was expressed in <i>E. coli</i>BL21 (DE3). The antigenicity of the recombinant proteins was verified by Western blotting and ELISA. In order to assess the induced immunity, the immunized mice were challenged with wild-type ETEC by an intraperitoneal route. Immunological analyses showed the production of a high titer of IgG serum with no sign of serum-mucosal IgA antibody response. The result of the challenge assay showed that 30% of immunized mice survived. The results of this study showed that CooD-CotD recombinant protein can stimulate immunity against ETEC. The designed chimera could be a prototype for the subunit vaccine, which is worthy of further consideration.


2016 ◽  
Vol 79 (11) ◽  
pp. 1965-1970 ◽  
Author(s):  
SANGEETHA ANANDA BASKARAN ◽  
ANUP KOLLANOOR-JOHNY ◽  
MEERA SURENDRAN NAIR ◽  
KUMAR VENKITANARAYANAN

ABSTRACTEscherichia coli O157:H7 is a major foodborne pathogen that can cause serious human illness characterized by hemorrhagic diarrhea and kidney failure. The pathology of enterohemorrhagic E. coli O157:H7 (EHEC) infection is primarily mediated by verotoxins, which bind to the globotriaosylceramide receptor on host cells. Antibiotics are contraindicated for treating EHEC infection because they lead to increased verotoxin release, thereby increasing the risk of renal failure and death in patients. Thus, alternative strategies are needed for controlling EHEC infections in humans. This study investigated the effect of subinhibitory concentrations of five plant-derived antimicrobial agents (PDAs) that are generally considered as safe, i.e., trans-cinnamaldehyde, eugenol, carvacrol, thymol, and β-resorcylic acid, on EHEC motility, adhesion to human intestinal epithelial cells, verotoxin production, and virulence gene expression. All tested PDAs reduced EHEC motility and attachment to human intestinal epithelial cells (P &lt; 0.05) and decreased verotoxin synthesis by EHEC. The reverse transcription real-time PCR data revealed that PDAs decreased the expression of critical virulence genes in EHEC (P &lt; 0.05). The results collectively suggest that these PDAs could be used to reduce EHEC virulence, but follow-up studies in animal models are necessary to validate these findings.


2014 ◽  
Vol 82 (12) ◽  
pp. 5308-5316 ◽  
Author(s):  
Lisa T. Read ◽  
Rachel W. Hahn ◽  
Carli C. Thompson ◽  
David L. Bauer ◽  
Elizabeth B. Norton ◽  
...  

ABSTRACTEnterotoxigenicEscherichia coli(ETEC) is a significant cause of diarrheal disease and death, especially in children in developing countries. ETEC causes disease by colonizing the small intestine and producing heat-labile toxin (LT), heat-stable toxin (ST), or both LT and ST (LT+ST). The majority of ETEC strains produce both ST and LT. Despite the prevalence of LT+ST-producing organisms, few studies have examined the physiologic or immunologic consequences of simultaneous exposure to these two potent enterotoxins. In the current report, we demonstrate that when LT and ST are both present, they increase water movement into the intestinal lumen over and above the levels observed with either toxin alone. As expected, cultured intestinal epithelial cells increased their expression of intracellular cyclic GMP (cGMP) when treated with ST and their expression of intracellular cyclic AMP (cAMP) when treated with LT. When both toxins were present, cGMP levels but not cAMP levels were synergistically elevated compared with the levels of expression caused by the corresponding single-toxin treatment. Our data also demonstrate that the levels of inflammatory cytokines produced by intestinal epithelial cells in response to LT are significantly reduced in animals exposed to both enterotoxins. These findings suggest that there may be complex differences between the epithelial cell intoxication and, potentially, secretory outcomes induced by ETEC strains expressing LT+ST compared with strains that express LT or ST only. Our results also reveal a novel mechanism wherein ST production may reduce the hosts' ability to mount an effective innate or adaptive immune response to infecting organisms.


Sign in / Sign up

Export Citation Format

Share Document