Faculty Opinions recommendation of Dynamic interactions of a transcription factor with DNA are accelerated by a chromatin remodeller.

Author(s):  
Peter B Becker
EMBO Reports ◽  
2004 ◽  
Vol 5 (11) ◽  
pp. 1064-1070 ◽  
Author(s):  
Tatiana S Karpova ◽  
Teresa Y Chen ◽  
Brian L Sprague ◽  
James G McNally

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Qi Zhao ◽  
Hongsheng Liu ◽  
Chenggui Yao ◽  
Jianwei Shuai ◽  
Xiaoqiang Sun

MicroRNAs (miRNAs) are endogenous noncoding RNAs which participate in diverse biological processes in animals and plants. They are known to join together with transcription factors and downstream gene, forming a complex and highly interconnected regulatory network. To recognize a few overrepresented motifs which are expected to perform important elementary regulatory functions, we constructed a computational model of miRNA-mediated feedforward loops (FFLs) in which a transcription factor (TF) regulates miRNA and targets gene. Based on the different dynamic interactions between miRNA and TF on gene expression, four possible structural topologies of FFLs with two gate functions (AND gate and OR gate) are introduced. We studied the dynamic behaviors of these different motifs. Furthermore, the relationship between the response time and maximal activation velocity of miRNA was investigated. We found that the curve of response time shows nonmonotonic behavior in Co1 loop with OR gate. This may help us to infer the mechanism of miRNA binding to the promoter region. At last we investigated the influence of important parameters on the dynamic response of system. We identified that the stationary levels of target gene in all loops were insensitive to the initial value of miRNA.


Author(s):  
Conly L. Rieder

The behavior of many cellular components, and their dynamic interactions, can be characterized in the living cell with considerable spatial and temporal resolution by video-enhanced light microscopy (video-LM). Indeed, under the appropriate conditions video-LM can be used to determine the real-time behavior of organelles ≤ 25-nm in diameter (e.g., individual microtubules—see). However, when pushed to its limit the structures and components observed within the cell by video-LM cannot be resolved nor necessarily even identified, only detected. Positive identification and a quantitative analysis often requires the corresponding electron microcopy (EM).


Author(s):  
David P. Bazett-Jones ◽  
Mark L. Brown

A multisubunit RNA polymerase enzyme is ultimately responsible for transcription initiation and elongation of RNA, but recognition of the proper start site by the enzyme is regulated by general, temporal and gene-specific trans-factors interacting at promoter and enhancer DNA sequences. To understand the molecular mechanisms which precisely regulate the transcription initiation event, it is crucial to elucidate the structure of the transcription factor/DNA complexes involved. Electron spectroscopic imaging (ESI) provides the opportunity to visualize individual DNA molecules. Enhancement of DNA contrast with ESI is accomplished by imaging with electrons that have interacted with inner shell electrons of phosphorus in the DNA backbone. Phosphorus detection at this intermediately high level of resolution (≈lnm) permits selective imaging of the DNA, to determine whether the protein factors compact, bend or wrap the DNA. Simultaneously, mass analysis and phosphorus content can be measured quantitatively, using adjacent DNA or tobacco mosaic virus (TMV) as mass and phosphorus standards. These two parameters provide stoichiometric information relating the ratios of protein:DNA content.


Nephrology ◽  
2000 ◽  
Vol 5 (3) ◽  
pp. A92-A92
Author(s):  
Takazoe K ◽  
Foti R ◽  
Hurst La ◽  
Atkins Rc ◽  
Nikolic‐Paterson DJ.

Sign in / Sign up

Export Citation Format

Share Document