Faculty Opinions recommendation of Tungsten transport protein A (WtpA) in Pyrococcus furiosus: the first member of a new class of tungstate and molybdate transporters.

Author(s):  
Tracy Palmer
2006 ◽  
Vol 188 (18) ◽  
pp. 6498-6505 ◽  
Author(s):  
Loes E. Bevers ◽  
Peter-Leon Hagedoorn ◽  
Gerard C. Krijger ◽  
Wilfred R. Hagen

ABSTRACT A novel tungstate and molybdate binding protein has been discovered from the hyperthermophilic archaeon Pyrococcus furiosus. This tungstate transport protein A (WtpA) is part of a new ABC transporter system selective for tungstate and molybdate. WtpA has very low sequence similarity with the earlier-characterized transport proteins ModA for molybdate and TupA for tungstate. Its structural gene is present in the genome of numerous archaea and some bacteria. The identification of this new tungstate and molybdate binding protein clarifies the mechanism of tungstate and molybdate transport in organisms that lack the known uptake systems associated with the ModA and TupA proteins, like many archaea. The periplasmic protein of this ABC transporter, WtpA (PF0080), was cloned and expressed in Escherichia coli. Using isothermal titration calorimetry, WtpA was observed to bind tungstate (dissociation constant [KD ] of 17 ± 7 pM) and molybdate (KD of 11 ± 5 nM) with a stoichiometry of 1.0 mol oxoanion per mole of protein. These low KD values indicate that WtpA has a higher affinity for tungstate than do ModA and TupA and an affinity for molybdate similar to that of ModA. A displacement titration of molybdate-saturated WtpA with tungstate showed that the tungstate effectively replaced the molybdate in the binding site of the protein.


2014 ◽  
Vol 16 (18) ◽  
pp. 8465 ◽  
Author(s):  
Aniruddha Ganguly ◽  
Bijan Kumar Paul ◽  
Soumen Ghosh ◽  
Sasanka Dalapati ◽  
Nikhil Guchhait

2009 ◽  
Vol 75 (7) ◽  
pp. 1820-1825 ◽  
Author(s):  
Scott D. Hamilton-Brehm ◽  
Gerrit J. Schut ◽  
Michael W. W. Adams

ABSTRACT The iron-sulfur nitroso compound [Fe4S3(NO)7]− is a broad-spectrum antimicrobial agent that has been used for more than 100 years to combat pathogenic anaerobes. Known as Roussin's black salt (RBS), it contains seven moles of nitric oxide, the release of which was always assumed to mediate its cytotoxicity. Using the hyperthermophilic archaeon Pyrococcus furiosus, it is demonstrated through growth studies, membrane analyses, and scanning electron microscopy that nitric oxide does not play a role in RBS toxicity; rather, the mechanism involves membrane disruption leading to cell lysis. Moreover, insoluble elemental sulfur (S0), which is reduced by P. furiosus to hydrogen sulfide, prevents cell lysis by RBS. It is proposed that S0 also directly interacts with the membranes of P. furiosus during its transfer into the cell, ultimately for reduction by a cytosolic NADPH sulfur reductase. RBS is proposed to be a new class of inorganic antimicrobial agent that also has potential use as an inert cell-lysing agent.


2010 ◽  
Vol 192 (21) ◽  
pp. 5841-5843 ◽  
Author(s):  
Sonya M. Clarkson ◽  
Elizabeth C. Newcomer ◽  
Everett G. Young ◽  
Michael W. W. Adams

ABSTRACT The gene (sipA) encoding the sulfur-induced protein A (PF2025) is highly upregulated during growth of Pyrococcus furiosus on elemental sulfur (S0). Expression of sipA is regulated by sulfide, the product of S0 reduction, but in an iron-dependent manner. SipA is proposed to play a role in intracellular iron sulfide detoxification.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Silvia Ardissone ◽  
Nicolas Kint ◽  
Patrick H Viollier

How specificity is programmed into post-translational modification of proteins by glycosylation is poorly understood, especially for O-linked glycosylation systems. Here we reconstitute and dissect the substrate specificity underpinning the cytoplasmic O-glycosylation pathway that modifies all six flagellins, five structural and one regulatory paralog, in Caulobacter crescentus, a monopolarly flagellated alpha-proteobacterium. We characterize the biosynthetic pathway for the sialic acid-like sugar pseudaminic acid and show its requirement for flagellation, flagellin modification and efficient export. The cognate NeuB enzyme that condenses phosphoenolpyruvate with a hexose into pseudaminic acid is functionally interchangeable with other pseudaminic acid synthases. The previously unknown and cell cycle-regulated FlmG protein, a defining member of a new class of cytoplasmic O-glycosyltransferases, is required and sufficient for flagellin modification. The substrate specificity of FlmG is conferred by its N-terminal flagellin-binding domain. FlmG accumulates before the FlaF secretion chaperone, potentially timing flagellin modification, export, and assembly during the cell division cycle.


2001 ◽  
Vol 183 (14) ◽  
pp. 4259-4268 ◽  
Author(s):  
Sherry V. Story ◽  
Amy M. Grunden ◽  
Michael W. W. Adams

ABSTRACT Aminoacylase was identified in cell extracts of the hyperthermophilic archaeon Pyrococcus furiosus by its ability to hydrolyze N-acetyl-l-methionine and was purified by multistep chromatography. The enzyme is a homotetramer (42.06 kDa per subunit) and, as purified, contains 1.0 ± 0.48 g-atoms of zinc per subunit. Treatment of the purified enzyme with EDTA resulted in complete loss of activity. This was restored to 86% of the original value (200 U/mg) by treatment with ZnCl2 (and to 74% by the addition of CoCl2). After reconstitution with ZnCl2, the enzyme contained 2.85 ± 0.48 g-atoms of zinc per subunit. Aminoacylase showed broad substrate specificity and hydrolyzed nonpolarN-acylated l amino acids (Met, Ala, Val, and Leu), as well as N-formyl-l-methionine. The high Km values for these compounds indicate that the enzyme plays a role in the metabolism of protein growth substrates rather than in the degradation of cellular proteins. Maximal aminoacylase activity withN-acetyl-l-methionine as the substrate occurred at pH 6.5 and a temperature of 100°C. The N-terminal amino acid sequence of the purified aminoacylase was used to identify, in theP. furiosus genome database, a gene that encodes 383 amino acids. The gene was cloned and expressed in Escherichia coli by using two approaches. One involved the T7lac promoter system, in which the recombinant protein was expressed as inclusion bodies. The second approach used the Trx fusion system, and this produced soluble but inactive recombinant protein. Renaturation and reconstitution experiments with Zn2+ ions failed to produce catalytically active protein. A survey of databases showed that, in general, organisms that contain a homolog of theP. furiosus aminoacylase (≥50% sequence identity) utilize peptide growth substrates, whereas those that do not contain the enzyme are not known to be proteolytic, suggesting a role for the enzyme in primary catabolism.


Oncogene ◽  
2001 ◽  
Vol 20 (45) ◽  
pp. 6579-6586 ◽  
Author(s):  
Karin Butz ◽  
Claudia Denk ◽  
Barbara Fitscher ◽  
Irena Crnkovic-Mertens ◽  
Angela Ullmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document