Faculty Opinions recommendation of Antimicrobial peptides activate the Vibrio cholerae sigmaE regulon through an OmpU-dependent signalling pathway.

Author(s):  
Fergal O'Gara
2010 ◽  
Vol 192 (8) ◽  
pp. 2044-2052 ◽  
Author(s):  
Jyl S. Matson ◽  
Hyun Ju Yoo ◽  
Kristina Hakansson ◽  
Victor J. DiRita

ABSTRACTAntimicrobial peptides are critical for innate antibacterial defense. Both Gram-negative and Gram-positive microbes have mechanisms to alter their surfaces and resist killing by antimicrobial peptides. InVibrio cholerae, two natural epidemic biotypes, classical and El Tor, exhibit distinct phenotypes with respect to sensitivity to the peptide antibiotic polymyxin B: classical strains are sensitive and El Tor strains are relatively resistant. We carried out mutant screens of both biotypes, aiming to identify classicalV. choleraemutants resistant to polymyxin B and El TorV. choleraemutants sensitive to polymyxin B. Insertions in a gene annotatedmsbB(encoding a predicted lipid A secondary acyltransferase) answered both screens, implicating its activity in antimicrobial peptide resistance ofV. cholerae. Analysis of a defined mutation in the El Tor biotype demonstrated thatmsbBis required for resistance to all antimicrobial peptides tested. Mutation ofmsbBin a classical strain resulted in reduced resistance to several antimicrobial peptides but in no significant change in resistance to polymyxin B.msbBmutants of both biotypes showed decreased colonization of infant mice, with a more pronounced defect observed for the El Tor mutant. Mass spectrometry analysis showed that lipid A of themsbBmutant for both biotypes was underacylated compared to lipid A of the wild-type isolates, confirming that MsbB is a functional acyltransferase inV. cholerae.


2004 ◽  
Vol 72 (6) ◽  
pp. 3577-3583 ◽  
Author(s):  
Jyoti Mathur ◽  
Matthew K. Waldor

ABSTRACT BPI (bactericidal/permeability-increasing) is a potent antimicrobial protein that was recently reported to be expressed as a surface protein on human gastrointestinal tract epithelial cells. In this study, we investigated the resistance of Vibrio cholerae, a small-bowel pathogen that causes cholera, to a BPI-derived peptide, P2. Unlike in Escherichia coli and Salmonella enterica serovar Typhimurium, resistance to P2 in V. cholerae was not dependent on the BipA GTPase. Instead, we found that ToxR, the master regulator of V. cholerae pathogenicity, controlled resistance to P2 by regulating the production of the outer membrane protein OmpU. Both toxR and ompU mutants were at least 100-fold more sensitive to P2 than were wild-type cells. OmpU also conferred resistance to polymyxin B sulfate, suggesting that this porin may impart resistance to cationic antibacterial proteins via a common mechanism. Studies of stationary-phase cells revealed that the ToxR-repressed porin OmpT may also contribute to P2 resistance. Finally, although the mechanism of porin-mediated resistance to antimicrobial peptides remains elusive, our data suggest that the BPI peptide sensitivity of OmpU-deficient V. cholerae is not attributable to a generally defective outer membrane.


2013 ◽  
Vol 9 (10) ◽  
pp. e1003620 ◽  
Author(s):  
Marylise Duperthuy ◽  
Annika E. Sjöström ◽  
Dharmesh Sabharwal ◽  
Fatemeh Damghani ◽  
Bernt Eric Uhlin ◽  
...  

Microbiology ◽  
2021 ◽  
Author(s):  
Erin C. Young ◽  
Jackson T. Baumgartner ◽  
Ece Karatan ◽  
Misty L. Kuhn

Biofilm formation in the human intestinal pathogen Vibrio cholerae is in part regulated by norspermidine, spermidine and spermine. V. cholerae senses these polyamines through a signalling pathway consisting of the periplasmic protein, NspS, and the integral membrane c-di-GMP phosphodiesterase MbaA. NspS and MbaA belong to a proposed class of novel signalling systems composed of periplasmic ligand-binding proteins and membrane-bound c-di-GMP phosphodiesterases containing both GGDEF and EAL domains. In this signal transduction pathway, NspS is hypothesized to interact with MbaA in the periplasm to regulate its phosphodiesterase activity. Polyamine binding to NspS likely alters this interaction, leading to the activation or inhibition of biofilm formation depending on the polyamine. The purpose of this study was to determine the amino acids important for NspS function. We performed random mutagenesis of the nspS gene, identified mutant clones deficient in biofilm formation, determined their responsiveness to norspermidine and mapped the location of these residues onto NspS homology models. Single mutants clustered on two lobes of the NspS model, but the majority were found on a single lobe that appeared to be more mobile upon norspermidine binding. We also identified residues in the putative ligand-binding site that may be important for norspermidine binding and interactions with MbaA. Ultimately, our results provide new insights into this novel signalling pathway in V. cholerae and highlight differences between periplasmic binding proteins involved in transport versus signal transduction.


mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Carmen M. Herrera ◽  
Alexander A. Crofts ◽  
Jeremy C. Henderson ◽  
S. Cassandra Pingali ◽  
Bryan W. Davies ◽  
...  

ABSTRACTThe bacterial cell surface is the first structure the host immune system targets to prevent infection. Cationic antimicrobial peptides of the innate immune system bind to the membrane of Gram-negative pathogens via conserved, surface-exposed lipopolysaccharide (LPS) molecules. We recently reported that modern strains of the global intestinal pathogenVibrio choleraemodify the anionic lipid A domain of LPS with a novel moiety, amino acids. Remarkably, glycine or diglycine addition to lipid A alters the surface charge of the bacteria to help evade the cationic antimicrobial peptide polymyxin. However, the regulatory mechanisms of lipid A modification inV. choleraeare unknown. Here, we identify a novel two-component system that regulates lipid A glycine modification by responding to important biological cues associated with pathogenesis, including bile, mildly acidic pH, and cationic antimicrobial peptides. The histidine kinase Vc1319 (VprB) and the response regulator Vc1320 (VprA) respond to these signals and are required for the expression of thealmEFGoperon that encodes the genes essential for glycine modification of lipid A. Importantly, both the newly identified two-component system and the lipid A modification machinery are required for colonization of the mammalian host. This study demonstrates howV. choleraeuses a previously unknown regulatory network, independent of well-studiedV. choleraevirulence factors and regulators, to respond to the host environment and cause infection.IMPORTANCEVibrio cholerae, the etiological agent of cholera disease, infects millions of people every year.V. choleraeEl Tor and classical biotypes have been responsible for all cholera pandemics. The El Tor biotype responsible for the current seventh pandemic has displaced the classical biotype worldwide and is highly resistant to cationic antimicrobial peptides, like polymyxin B. This resistance arises from the attachment of one or two glycine residues to the lipid A domain of lipopolysaccharide, a major surface component of Gram-negative bacteria. Here, we identify the VprAB two-component system that regulates the charge of the bacterial surface by directly controlling the expression of genes required for glycine addition to lipid A. The VprAB-dependent lipid A modification confers polymyxin B resistance and contributes significantly to pathogenesis. This finding is relevant for understanding howVibrio choleraehas evolved mechanisms to facilitate the evasion of the host immune system and increase bacterial fitness.


Sign in / Sign up

Export Citation Format

Share Document