Faculty Opinions recommendation of Traffic-related outdoor air pollution and respiratory symptoms in children: the impact of adjustment for exposure measurement error.

Author(s):  
Rémy Slama
Author(s):  
Eun-hye Yoo ◽  
Qiang Pu ◽  
Youngseob Eum ◽  
Xiangyu Jiang

The impact of individuals’ mobility on the degree of error in estimates of exposure to ambient PM2.5 concentrations is increasingly reported in the literature. However, the degree to which accounting for mobility reduces error likely varies as a function of two related factors—individuals’ routine travel patterns and the local variations of air pollution fields. We investigated whether individuals’ routine travel patterns moderate the impact of mobility on individual long-term exposure assessment. Here, we have used real-world time–activity data collected from 2013 participants in Erie/Niagara counties, New York, USA, matched with daily PM2.5 predictions obtained from two spatial exposure models. We further examined the role of the spatiotemporal representation of ambient PM2.5 as a second moderator in the relationship between an individual’s mobility and the exposure measurement error using a random effect model. We found that the effect of mobility on the long-term exposure estimates was significant, but that this effect was modified by individuals’ routine travel patterns. Further, this effect modification was pronounced when the local variations of ambient PM2.5 concentrations were captured from multiple sources of air pollution data (‘a multi-sourced exposure model’). In contrast, the mobility effect and its modification were not detected when ambient PM2.5 concentration was estimated solely from sparse monitoring data (‘a single-sourced exposure model’). This study showed that there was a significant association between individuals’ mobility and the long-term exposure measurement error. However, the effect could be modified by individuals’ routine travel patterns and the error-prone representation of spatiotemporal variability of PM2.5.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Dimitris Evangelopoulos ◽  
Klea Katsouyanni ◽  
Joel Schwartz ◽  
Heather Walton

Abstract Background Most epidemiological studies estimate associations without considering exposure measurement error. While some studies have estimated the impact of error in single-exposure models we aimed to quantify the effect of measurement error in multi-exposure models, specifically in time-series analysis of PM2.5, NO2, and mortality using simulations, under various plausible scenarios for exposure errors. Measurement error in multi-exposure models can lead to effect transfer where the effect estimate is overestimated for the pollutant estimated with more error to the one estimated with less error. This complicates interpretation of the independent effects of different pollutants and thus the relative importance of reducing their concentrations in air pollution policy. Methods Measurement error was defined as the difference between ambient concentrations and personal exposure from outdoor sources. Simulation inputs for error magnitude and variability were informed by the literature. Error-free exposures with their consequent health outcome and error-prone exposures of various error types (classical/Berkson) were generated. Bias was quantified as the relative difference in effect estimates of the error-free and error-prone exposures. Results Mortality effect estimates were generally underestimated with greater bias observed when low ratios of the true exposure variance over the error variance were assumed (27.4% underestimation for NO2). Higher ratios resulted in smaller, but still substantial bias (up to 19% for both pollutants). Effect transfer was observed indicating that less precise measurements for one pollutant (NO2) yield more bias, while the co-pollutant (PM2.5) associations were found closer to the true. Interestingly, the sum of single-pollutant model effect estimates was found closer to the summed true associations than those from multi-pollutant models, due to cancelling out of confounding and measurement error bias. Conclusions Our simulation study indicated an underestimation of true independent health effects of multiple exposures due to measurement error. Using error parameter information in future epidemiological studies should provide more accurate concentration-response functions.


Epidemiology ◽  
2011 ◽  
Vol 22 ◽  
pp. S201
Author(s):  
Eleanor Setton ◽  
Julian Marshall ◽  
Katie Lundquist ◽  
Perry Hystad ◽  
Michael Brauer

2009 ◽  
Vol 20 (1) ◽  
pp. 101-111 ◽  
Author(s):  
Lisa K Baxter ◽  
Rosalind J Wright ◽  
Christopher J Paciorek ◽  
Francine Laden ◽  
Helen H Suh ◽  
...  

Epidemiology ◽  
2008 ◽  
Vol 19 (3) ◽  
pp. 409-416 ◽  
Author(s):  
Sofie Van Roosbroeck ◽  
Ruifeng Li ◽  
Gerard Hoek ◽  
Erik Lebret ◽  
Bert Brunekreef ◽  
...  

2011 ◽  
Vol 10 (1) ◽  
Author(s):  
Gretchen T Goldman ◽  
James A Mulholland ◽  
Armistead G Russell ◽  
Matthew J Strickland ◽  
Mitchel Klein ◽  
...  

2021 ◽  
Vol 6 ◽  
pp. 174
Author(s):  
Sowmya Malamardi ◽  
Katrina A. Lambert ◽  
Mehak Batra ◽  
Rachel Tham ◽  
Mahesh Padukudru Anand ◽  
...  

Background: Outdoor air pollution and childhood asthma are increasing problems in South Asian countries. However, little is known about the associations between levels of air pollution and severe childhood asthma requiring hospital treatment in these regions. Methods: We undertook a systematic review to assess the evidence between outdoor air pollution exposure and childhood and adolescent asthma hospitalization in South Asia. MEDLINE, Web of Science, Google Scholar, CINAHL, Embase, Scopus, ProQuest Central databases were searched for peer-reviewed papers, and examination of reference lists was conducted for additional studies. We identified all the literature published in English up to January 2021 for the study population comprised of children aged less than 19 years. The search strategy was designed to identify all the studies and screen them as per the inclusion criteria. The method of qualitative synthesis using the standard tool determined the comprehensiveness of the assessment of bias. Results: Of the original 367 studies screened three studies were ultimately included from India, Pakistan and Sri Lanka and a narrative synthesis was conducted. Although studies reported adverse effects of outdoor pollution on asthma hospitalizations, limitations in exposure assessments, varying definitions of asthma hospitalizations and limited data analysis were identified. Conclusions: There is currently limited evidence that can provide meaningful risk estimates of the impact of outdoor air pollution on asthma hospitalizations during childhood and adolescence. Studies with comparable outcome definitions, appropriate exposure assessments and study designs are needed to inform future public and environmental health policy. PROSPERO registration: CRD42020156714 (28/04/2020)


BMJ Open ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. e031312 ◽  
Author(s):  
Zhuanlan Sun ◽  
Demi Zhu

ObjectivesOutdoor air pollution is a serious environmental problem worldwide. Current systematic reviews (SRs) and meta-analyses (MAs) mostly focused on some specific health outcomes or some specific air pollution.DesignThis evidence gap map (EGM) is to identify existing gaps from SRs and MAs and report them in broad topic areas.Data sourcesPubMed, Cochrane, Scopus and Web of Science were searched from their inception until June 2018. Citations and reference lists were traced.Eligibility criteriaSRs and MAs that investigated the impact of outdoor air pollution on human health outcomes were collected. This study excluded original articles and qualitative review articles.Data extraction and synthesisCharacteristics of the included SRs and MAs were extracted and summarised. Extracted data included authors, publication year, location of the corresponding author(s), publication journal discipline, study design, study duration, sample size, study region, target population, types of air pollution and health outcomes.ResultsAsia and North America published 93% of SRs and MAs included in this EGM. 31% of the SRs and MAs (27/86) included primary studies conducted in 5–10 countries. Their publication trends have increased during the last 10 years. A total of 2864 primary studies was included. The median number of included primary studies was 20 (range, 7–167). Cohort studies, case cross-over studies and time-series studies were the top three most used study designs. The mostly researched population was the group of all ages (46/86, 53%). Cardiovascular diseases, respiratory diseases and health service records were mostly reported. A lack of definite diagnostic criteria, unclear reporting of air pollution exposure and time period of primary studies were the main research gaps.ConclusionsThis EGM provided a visual overview of health outcomes affected by outdoor air pollution exposure. Future research should focus on chronic diseases, cancer and mental disorders.


Sign in / Sign up

Export Citation Format

Share Document