Faculty Opinions recommendation of Platelet protein interactions: map, signaling components, and phosphorylation groundstate.

Author(s):  
Ralph L Nachman
Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1822
Author(s):  
Bojana Stefanovska ◽  
Fabrice André ◽  
Olivia Fromigué

The first Tribbles protein was identified as critical for the coordination of morphogenesis in Drosophila melanogaster. Three mammalian homologs were subsequently identified, with a structure similar to classic serine/threonine kinases, but lacking crucial amino acids for the catalytic activity. Thereby, the very weak ATP affinity classifies TRIB proteins as pseudokinases. In this review, we provide an overview of the regulation of TRIB3 gene expression at both transcriptional and post-translational levels. Despite the absence of kinase activity, TRIB3 interferes with a broad range of cellular processes through protein–protein interactions. In fact, TRIB3 acts as an adaptor/scaffold protein for many other proteins such as kinase-dependent proteins, transcription factors, ubiquitin ligases, or even components of the spliceosome machinery. We then state the contribution of TRIB3 to cancer development, progression, and metastasis. TRIB3 dysregulation can be associated with good or bad prognosis. Indeed, as TRIB3 interacts with and regulates the activity of many key signaling components, it can act as a tumor-suppressor or oncogene in a context-dependent manner.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1586
Author(s):  
Adrián Garrido-Bigotes ◽  
Marcela Torrejón ◽  
Roberto Solano ◽  
Carlos R. Figueroa

Strawberry fruits are rich in flavonoids like proanthocyanidins and anthocyanins. Their biosynthesis and accumulation are controlled by the MYB-bHLH-WD40 (MBW) transcriptional complex, which is mainly formed by basic helix-loop-helix (bHLH) and MYB transcription factors (TFs). In Arabidopsis thaliana both bHLH and MYB TFs are repressed by JASMONATE ZIM-DOMAIN (JAZ) proteins, the key repressors of the jasmonate-signaling pathway. The aim of this research was the characterization of the FaJAZ1/8.1/9/10 proteins and molecular targets of signaling components and anthocyanin biosynthesis-related TFs of Fragaria × ananassa by protein–protein interactions. For this, domain compositions were studied by multiple alignments and phylogenetic analyses, while interactions were analyzed by yeast two-hybrid (Y2H) assays. We detected high conservation of FaJAZ proteins and jasmonate-signaling components, as well as FabHLHs and FaMYB10 TFs. Moreover, we report the F. × ananassa YABBY1 (FaYAB1) TF, which is related to anthocyanin biosynthesis in Arabidopsis, showed high conservation of functional domains. We demonstrated that FaJAZ repressors interacted with F. × ananassa NOVEL INTERACTOR OF JAZ (FaNINJA), FaMYC2, and JASMONATE ASSOCIATED MYC2-LIKE (FaJAM) proteins. Besides, transcription factors of MBW-complex like FabHLH3, FabHLH33, and FaMYB10, together with FaYAB1, were molecular targets of FaJAZ repressors, exhibiting specificity or redundancy of interaction depending on particular FaJAZ protein. Overall, these results suggest that interactions of jasmonate-signaling components are fully conserved, and anthocyanin biosynthesis might be regulated by JAZ repressors in F. × ananassa.


2008 ◽  
Vol 28 (7) ◽  
pp. 1326-1331 ◽  
Author(s):  
Marcus Dittrich ◽  
Ingvild Birschmann ◽  
Silke Mietner ◽  
Albert Sickmann ◽  
Ulrich Walter ◽  
...  

Author(s):  
S.B. Andrews ◽  
R.D. Leapman ◽  
P.E. Gallant ◽  
T.S. Reese

As part of a study on protein interactions involved in microtubule (MT)-based transport, we used the VG HB501 field-emission STEM to obtain low-dose dark-field mass maps of isolated, taxol-stabilized MTs and correlated these micrographs with detailed stereo images from replicas of the same MTs. This approach promises to be useful for determining how protein motors interact with MTs. MTs prepared from bovine and squid brain tubulin were purified and free from microtubule-associated proteins (MAPs). These MTs (0.1-1 mg/ml tubulin) were adsorbed to 3-nm evaporated carbon films supported over Formvar nets on 600-m copper grids. Following adsorption, the grids were washed twice in buffer and then in either distilled water or in isotonic or hypotonic ammonium acetate, blotted, and plunge-frozen in ethane/propane cryogen (ca. -185 C). After cryotransfer into the STEM, specimens were freeze-dried and recooled to ca.-160 C for low-dose (<3000 e/nm2) dark-field mapping. The molecular weights per unit length of MT were determined relative to tobacco mosaic virus standards from elastic scattering intensities. Parallel grids were freeze-dried and rotary shadowed with Pt/C at 14°.


2013 ◽  
Vol 54 ◽  
pp. 79-90 ◽  
Author(s):  
Saba Valadkhan ◽  
Lalith S. Gunawardane

Eukaryotic cells contain small, highly abundant, nuclear-localized non-coding RNAs [snRNAs (small nuclear RNAs)] which play important roles in splicing of introns from primary genomic transcripts. Through a combination of RNA–RNA and RNA–protein interactions, two of the snRNPs, U1 and U2, recognize the splice sites and the branch site of introns. A complex remodelling of RNA–RNA and protein-based interactions follows, resulting in the assembly of catalytically competent spliceosomes, in which the snRNAs and their bound proteins play central roles. This process involves formation of extensive base-pairing interactions between U2 and U6, U6 and the 5′ splice site, and U5 and the exonic sequences immediately adjacent to the 5′ and 3′ splice sites. Thus RNA–RNA interactions involving U2, U5 and U6 help position the reacting groups of the first and second steps of splicing. In addition, U6 is also thought to participate in formation of the spliceosomal active site. Furthermore, emerging evidence suggests additional roles for snRNAs in regulation of various aspects of RNA biogenesis, from transcription to polyadenylation and RNA stability. These snRNP-mediated regulatory roles probably serve to ensure the co-ordination of the different processes involved in biogenesis of RNAs and point to the central importance of snRNAs in eukaryotic gene expression.


2011 ◽  
Vol 49 (08) ◽  
Author(s):  
LC König ◽  
M Meinhard ◽  
C Sandig ◽  
MH Bender ◽  
A Lovas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document