scholarly journals Interactions of JAZ Repressors with Anthocyanin Biosynthesis-Related Transcription Factors of Fragaria × ananassa

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1586
Author(s):  
Adrián Garrido-Bigotes ◽  
Marcela Torrejón ◽  
Roberto Solano ◽  
Carlos R. Figueroa

Strawberry fruits are rich in flavonoids like proanthocyanidins and anthocyanins. Their biosynthesis and accumulation are controlled by the MYB-bHLH-WD40 (MBW) transcriptional complex, which is mainly formed by basic helix-loop-helix (bHLH) and MYB transcription factors (TFs). In Arabidopsis thaliana both bHLH and MYB TFs are repressed by JASMONATE ZIM-DOMAIN (JAZ) proteins, the key repressors of the jasmonate-signaling pathway. The aim of this research was the characterization of the FaJAZ1/8.1/9/10 proteins and molecular targets of signaling components and anthocyanin biosynthesis-related TFs of Fragaria × ananassa by protein–protein interactions. For this, domain compositions were studied by multiple alignments and phylogenetic analyses, while interactions were analyzed by yeast two-hybrid (Y2H) assays. We detected high conservation of FaJAZ proteins and jasmonate-signaling components, as well as FabHLHs and FaMYB10 TFs. Moreover, we report the F. × ananassa YABBY1 (FaYAB1) TF, which is related to anthocyanin biosynthesis in Arabidopsis, showed high conservation of functional domains. We demonstrated that FaJAZ repressors interacted with F. × ananassa NOVEL INTERACTOR OF JAZ (FaNINJA), FaMYC2, and JASMONATE ASSOCIATED MYC2-LIKE (FaJAM) proteins. Besides, transcription factors of MBW-complex like FabHLH3, FabHLH33, and FaMYB10, together with FaYAB1, were molecular targets of FaJAZ repressors, exhibiting specificity or redundancy of interaction depending on particular FaJAZ protein. Overall, these results suggest that interactions of jasmonate-signaling components are fully conserved, and anthocyanin biosynthesis might be regulated by JAZ repressors in F. × ananassa.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Francisco Macías ◽  
Raquel Afonso-Lehmann ◽  
Patricia E. Carreira ◽  
M. Carmen Thomas

Abstract Background Trypanosomatid genomes are colonized by active and inactive mobile DNA elements, such as LINE, SINE-like, SIDER and DIRE retrotransposons. These elements all share a 77-nucleotide-long sequence at their 5′ ends, known as Pr77, which activates transcription, thereby generating abundant unspliced and translatable transcripts. However, transcription factors that mediates this process have still not been reported. Methods TATA-binding protein (TBP) and small nuclear RNA-activating protein 50 kDa (SNAP50) recombinant proteins and specific antibodies raised against them were generated. Protein capture assay, electrophoretic mobility-shift assays (EMSA) and EMSA competition assays carried out using these proteins and nuclear proteins of the parasite together to specific DNA sequences used as probes allowed detecting direct interaction of these transcription factors to Pr77 sequence. Results This study identified TBP and SNAP50 as part of the DNA-protein complex formed by the Pr77 promoter sequence and nuclear proteins of Trypanosoma cruzi. TBP establishes direct and specific contact with the Pr77 sequence, where the DPE and DPE downstream regions are docking sites with preferential binding. TBP binds cooperatively (Hill coefficient = 1.67) to Pr77 and to both strands of the Pr77 sequence, while the conformation of this highly structured sequence is not involved in TBP binding. Direct binding of SNAP50 to the Pr77 sequence is weak and may be mediated by protein–protein interactions through other trypanosomatid nuclear proteins. Conclusions Identification of the transcription factors that mediate Pr77 transcription may help to elucidate how these retrotransposons are mobilized within the trypanosomatid genomes and their roles in gene regulation processes in this human parasite. Graphic abstract


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jifang Zhang ◽  
Jian Zhao ◽  
Qunyun Tan ◽  
Xiaojun Qiu ◽  
Shiyong Mei

AbstractRadish (Raphanus sativus) is an important vegetable worldwide that exhibits different flesh and skin colors. The anthocyanins responsible for the red and purple coloring in radishes possess nutritional value and pharmaceutical potential. To explore the structural and regulatory networks related to anthocyanin biosynthesis and identify key genes, we performed comparative transcriptome analyses of the skin and flesh of six colored radish accessions. The transcript profiles showed that each accession had a species-specific transcript profile. For radish pigmentation accumulation, the expression levels of anthocyanin biosynthetic genes (RsTT4, RsC4H, RsTT7, RsCCOAMT, RsDFR, and RsLDOX) were significantly upregulated in the red- and purple-colored accessions, but were downregulated or absent in the white and black accessions. The correlation test, combined with metabolome (PCC > 0.95), revealed five structural genes (RsTT4, RsDFR, RsCCOAMT, RsF3H, and RsBG8L) and three transcription factors (RsTT8-1, RsTT8-2, and RsPAR1) to be significantly correlated with flavonoids in the skin of the taproot. Four structural genes (RsBG8L, RsDFR, RsCCOAMT, and RsLDOX) and nine transcription factors (RsTT8-1, RsTT8-2, RsMYB24L, RsbHLH57, RsPAR2L, RsbHLH113L, RsOGR3L, RsMYB24, and RsMYB34L) were found to be significantly correlated with metabolites in the flesh of the taproot. This study provides a foundation for future studies on the gene functions and genetic diversity of radish pigmentation and should aid in the cultivation of new valuable radish varieties.


2009 ◽  
Vol 75 (17) ◽  
pp. 5676-5686 ◽  
Author(s):  
Kohjiro Tanaka ◽  
Seiichi Furukawa ◽  
Naruo Nikoh ◽  
Tetsuhiko Sasaki ◽  
Takema Fukatsu

ABSTRACT Wolbachia endosymbionts are ubiquitously found in diverse insects including many medical and hygienic pests, causing a variety of reproductive phenotypes, such as cytoplasmic incompatibility, and thereby efficiently spreading in host insect populations. Recently, Wolbachia-mediated approaches to pest control and management have been proposed, but the application of these approaches has been hindered by the lack of genetic transformation techniques for symbiotic bacteria. Here, we report the genome and structure of active bacteriophages from a Wolbachia endosymbiont. From the Wolbachia strain wCauB infecting the moth Ephestia kuehniella two closely related WO prophages, WOcauB2 of 43,016 bp with 47 open reading frames (ORFs) and WOcauB3 of 45,078 bp with 46 ORFs, were characterized. In each of the prophage genomes, an integrase gene and an attachment site core sequence were identified, which are putatively involved in integration and excision of the mobile genetic elements. The 3′ region of the prophages encoded genes with sequence motifs related to bacterial virulence and protein-protein interactions, which might represent effector molecules that affect cellular processes and functions of their host bacterium and/or insect. Database searches and phylogenetic analyses revealed that the prophage genes have experienced dynamic evolutionary trajectories. Genes similar to the prophage genes were found across divergent bacterial phyla, highlighting the active and mobile nature of the genetic elements. We suggest that the active WO prophage genomes and their constituent sequence elements would provide a clue to development of a genetic transformation vector for Wolbachia endosymbionts.


2005 ◽  
Vol 386 (2) ◽  
pp. 95-99 ◽  
Author(s):  
Alexander E.F. Smith ◽  
Farzin Farzaneh ◽  
Kevin G. Ford

AbstractIn order to demonstrate that an existing zinc-finger protein can be simply modified to enhance DNA binding and sequence discrimination in both episomal and chromatin contexts using existing zinc-finger DNA recognition code data, and without recourse to phage display and selection strategies, we have examined the consequences of a single zinc-finger extension to a synthetic three-zinc-finger VP16 fusion protein, on transcriptional activation from model target promoters harbouring the zinc-finger binding sequences. We report a nearly 10-fold enhanced transcriptional activation by the four-zinc-finger VP16 fusion protein relative to the progenitor three-finger VP16 protein in transient assays and a greater than five-fold enhancement in stable reporter-gene expression assays. A marked decrease in transcriptional activation was evident for the four-zinc-finger derivative from mutated regulatory regions compared to the progenitor protein, as a result of recognition site-size extension. This discriminatory effect was shown to be protein concentration-dependent. These observations suggest that four-zinc-finger proteins are stable functional motifs that can be a significant improvement over the progenitor three-zinc-finger protein, both in terms of specificity and the ability to target transcriptional function to promoters, and that single zinc-finger extension can therefore have a significant impact on DNA zinc-finger protein interactions. This is a simple route for modifying or enhancing the binding properties of existing synthetic zinc-finger-based transcription factors and may be particularly suited for the modification of endogenous zinc-finger transcription factors for promoter biasing applications.


2017 ◽  
Vol 225 ◽  
pp. 310-316 ◽  
Author(s):  
Huiling Zhang ◽  
Bo Yang ◽  
Jun Liu ◽  
Dalong Guo ◽  
Juan Hou ◽  
...  

2020 ◽  
Vol 151 ◽  
pp. 271-283 ◽  
Author(s):  
Chengyan Deng ◽  
Jiaying Wang ◽  
Chenfei Lu ◽  
Yanfei Li ◽  
Deyuan Kong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document