Faculty Opinions recommendation of CD40L+ CD4+ memory T cells migrate in a CD62P-dependent fashion into reactive lymph nodes and license dendritic cells for T cell priming.

Author(s):  
Linda Bradley
2008 ◽  
Vol 205 (11) ◽  
pp. 2561-2574 ◽  
Author(s):  
Alfonso Martín-Fontecha ◽  
Dirk Baumjohann ◽  
Greta Guarda ◽  
Andrea Reboldi ◽  
Miroslav Hons ◽  
...  

There is growing evidence that the maturation state of dendritic cells (DCs) is a critical parameter determining the balance between tolerance and immunity. We report that mouse CD4+ effector memory T (TEM) cells, but not naive or central memory T cells, constitutively expressed CD40L at levels sufficient to induce DC maturation in vitro and in vivo in the absence of antigenic stimulation. CD4+ TEM cells were excluded from resting lymph nodes but migrated in a CD62P-dependent fashion into reactive lymph nodes that were induced to express CD62P, in a transient or sustained fashion, on high endothelial venules. Trafficking of CD4+ TEM cells into chronic reactive lymph nodes maintained resident DCs in a mature state and promoted naive T cell responses and experimental autoimmune encephalomyelitis (EAE) to antigens administered in the absence of adjuvants. Antibodies to CD62P, which blocked CD4+ TEM cell migration into reactive lymph nodes, inhibited DC maturation, T cell priming, and induction of EAE. These results show that TEM cells can behave as endogenous adjuvants and suggest a mechanistic link between lymphocyte traffic in lymph nodes and induction of autoimmunity.


Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2497-2498
Author(s):  
Susumu Nakae ◽  
Keisuke Oboki ◽  
Hirohisa Saito

IgE/antigen-FcϵRI crosslinking promotes antigen internalization and apoptosis in mouse mast cells. Dendritic cells uptake the apoptotic mast cells carrying internalized antigens, and thus can efficiently present the antigens to memory T cells.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jean-François Daudelin ◽  
Mélissa Mathieu ◽  
Salix Boulet ◽  
Nathalie Labrecque

Following activation, naïve CD8+T cells will differentiate into effectors that differ in their ability to survive: some will persist as memory cells while the majority will die by apoptosis. Signals given by antigen-presenting cells (APCs) at the time of priming modulate this differential outcome. We have recently shown that, in opposition to dendritic cell (DC), CD40-activated B-(CD40-B) cell vaccination fails to efficiently produce CD8+memory T cells. Understanding why CD40-B-cell vaccination does not lead to the generation of functional long-lived memory cells is essential to define the signals that should be provided to naïve T cells by APCs. Here we show that CD40-B cells produce very low amount of IL-6 when compared to DCs. However, supplementation with IL-6 during CD40-B-cell vaccination did not improve memory generation. Furthermore, IL-6-deficient DCs maintained the capacity to promote the formation of functional CD8+effectors and memory cells. Our results suggest that in APC vaccination models, IL-6 provided by the APCs is dispensable for proper CD8+T-cell memory generation.


2016 ◽  
Vol 90 (15) ◽  
pp. 6699-6708 ◽  
Author(s):  
Emily K. Cartwright ◽  
David Palesch ◽  
Maud Mavigner ◽  
Mirko Paiardini ◽  
Ann Chahroudi ◽  
...  

ABSTRACTTreatment of human immunodeficiency virus (HIV) infection with antiretroviral therapy (ART) has significantly improved prognosis. Unfortunately, interruption of ART almost invariably results in viral rebound, attributed to a pool of long-lived, latently infected cells. Based on their longevity and proliferative potential, CD4+T memory stem cells (TSCM) have been proposed as an important site of HIV persistence. In a previous study, we found that in simian immunodeficiency virus (SIV)-infected rhesus macaques (RM), CD4+TSCMare preserved in number but show (i) a decrease in the frequency of CCR5+cells, (ii) an expansion of the fraction of proliferating Ki-67+cells, and (iii) high levels of SIV DNA. To understand the impact of ART on both CD4+TSCMhomeostasis and virus persistence, we conducted a longitudinal analysis of these cells in the blood and lymph nodes of 25 SIV-infected RM. We found that ART induced a significant restoration of CD4+CCR5+TSCMboth in blood and in lymph nodes and a reduction in the fraction of proliferating CD4+Ki-67+TSCMin blood (but not lymph nodes). Importantly, we found that the level of SIV DNA in CD4+transitional memory (TTM) and effector memory (TEM) T cells declined ∼100-fold after ART in both blood and lymph nodes, while the level of SIV DNA in CD4+TSCMand central memory T cells (TCM-) did not significantly change. These data suggest that ART is effective at partially restoring CD4+TSCMhomeostasis, and the observed stable level of virus in TSCMsupports the hypothesis that these cells are a critical contributor to SIV persistence.IMPORTANCEUnderstanding the roles of various CD4+T cell memory subsets in immune homeostasis and HIV/SIV persistence during antiretroviral therapy (ART) is critical to effectively treat and cure HIV infection. T memory stem cells (TSCM) are a unique memory T cell subset with enhanced self-renewal capacity and the ability to differentiate into other memory T cell subsets, such as central and transitional memory T cells (TCMand TTM, respectively). CD4+TSCMare disrupted but not depleted during pathogenic SIV infection. We find that ART is partially effective at restoring CD4+TSCMhomeostasis and that SIV DNA harbored within this subset contracts more slowly than virus harbored in shorter-lived subsets, such as TTMand effector memory (TEM). Because of their ability to persist long-term in an individual, understanding the dynamics of virally infected CD4+TSCMduring suppressive ART is important for future therapeutic interventions aimed at modulating immune activation and purging the HIV reservoir.


2006 ◽  
Vol 36 (5) ◽  
pp. 1168-1178 ◽  
Author(s):  
Edwin A. M. Lee ◽  
Katie L. Flanagan ◽  
Gabriela Minigo ◽  
William H. H. Reece ◽  
Robin Bailey ◽  
...  

2011 ◽  
Vol 71 (1) ◽  
pp. 120-128 ◽  
Author(s):  
Honorio Torres-Aguilar ◽  
Miri Blank ◽  
Shaye Kivity ◽  
Mudi Misgav ◽  
Jacob Luboshitz ◽  
...  

ObjectivesThe importance of β2-glycoprotein I (β2GPI)-specific CD4+ T cells in the development of pathogenic processes in patients with antiphospholipid syndrome (APS) and APS mouse models is well established. Therefore, our objective is to manipulate the β2GPI specific CD4+ T cells using tolerogenic dendritic cells (tDCs) to induce tolerance. We aim to evaluate the capability of tDCs to induce antigen-specific tolerance in effector/memory T cells from patients with APS and to elucidate the involved mechanism.MethodsDCs and tDCs were produced from patients with APS peripheral-blood-monocytes, using specific cytokines. β2GPI-specific tolerance induction was investigated by coculturing control DC (cDC) or tDC, β2GPI-loaded, with autologous effector/memory T cells, evaluating the proliferative response, phenotype, cytokines secretion, viability and regulatory T cells.ResultsHuman monocyte-derived DCs treated with interleukin (IL)-10 and transforming growth factor β-1 (10/TGF-DC) induced β2GPI-specific-unresponsiveness in effector/memory CD4+ T cells (46.5%±26.0 less proliferation) in 16 of 20 analysed patients with APS, without affecting the proliferative response to an unrelated candidin. In five analysed patients, 10/TGF-DC-stimulated T cells acquired an IL-2lowinterferon γlowIL-10high cytokine profile, with just a propensity to express higher numbers of Foxp3+CTLA-4+ cells, but with an evident suppressive ability. In four of 10 analysed patients, 10/TGF-DC-stimulated T cell hyporesponsiveness could not be reverted and showed higher percentages of late apoptosis, p<0.02.ConclusionsThe inherent tolerance induction resistance of activated T cells present during the development of autoimmune diseases has delayed the application of tDC as an alternative therapy. This study highlights the 10/TGF-DC feasibility to induce antigen-specific unresponsiveness in autoreactive T cells generated in patients with APS by inducing apoptosis or T cells with regulatory abilities.


2016 ◽  
Vol 12 (7) ◽  
pp. e1005771
Author(s):  
Jonatan Ersching ◽  
Alexandre Salgado Basso ◽  
Vera Lúcia Garcia Calich ◽  
Karina Ramalho Bortoluci ◽  
Maurício M. Rodrigues

eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Miriam Samstein ◽  
Heidi A Schreiber ◽  
Ingrid M Leiner ◽  
Bože Sušac ◽  
Michael S Glickman ◽  
...  

Defense against infection by Mycobacterium tuberculosis (Mtb) is mediated by CD4 T cells. CCR2+ inflammatory monocytes (IMs) have been implicated in Mtb-specific CD4 T cell responses but their in vivo contribution remains unresolved. Herein, we show that transient ablation of IMs during infection prevents Mtb delivery to pulmonary lymph nodes, reducing CD4 T cell responses. Transfer of MHC class II-expressing IMs to MHC class II-deficient, monocyte-depleted recipients, while restoring Mtb transport to mLNs, does not enable Mtb-specific CD4 T cell priming. On the other hand, transfer of MHC class II-deficient IMs corrects CD4 T cell priming in monocyte-depleted, MHC class II-expressing mice. Specific depletion of classical DCs does not reduce Mtb delivery to pulmonary lymph nodes but markedly reduces CD4 T cell priming. Thus, although IMs acquire characteristics of DCs while delivering Mtb to lymph nodes, cDCs but not moDCs induce proliferation of Mtb-specific CD4 T cells.


Sign in / Sign up

Export Citation Format

Share Document