Faculty Opinions recommendation of Role of pleiotropy in the evolution of a cryptic developmental variation in Caenorhabditis elegans.

Author(s):  
Norman Johnson
Genetics ◽  
2003 ◽  
Vol 163 (2) ◽  
pp. 571-580 ◽  
Author(s):  
William B Raich ◽  
Celine Moorman ◽  
Clay O Lacefield ◽  
Jonah Lehrer ◽  
Dusan Bartsch ◽  
...  

Abstract The pathology of trisomy 21/Down syndrome includes cognitive and memory deficits. Increased expression of the dual-specificity protein kinase DYRK1A kinase (DYRK1A) appears to play a significant role in the neuropathology of Down syndrome. To shed light on the cellular role of DYRK1A and related genes we identified three DYRK/minibrain-like genes in the genome sequence of Caenorhabditis elegans, termed mbk-1, mbk-2, and hpk-1. We found these genes to be widely expressed and to localize to distinct subcellular compartments. We isolated deletion alleles in all three genes and show that loss of mbk-1, the gene most closely related to DYRK1A, causes no obvious defects, while another gene, mbk-2, is essential for viability. The overexpression of DYRK1A in Down syndrome led us to examine the effects of overexpression of its C. elegans ortholog mbk-1. We found that animals containing additional copies of the mbk-1 gene display behavioral defects in chemotaxis toward volatile chemoattractants and that the extent of these defects correlates with mbk-1 gene dosage. Using tissue-specific and inducible promoters, we show that additional copies of mbk-1 can impair olfaction cell-autonomously in mature, fully differentiated neurons and that this impairment is reversible. Our results suggest that increased gene dosage of human DYRK1A in trisomy 21 may disrupt the function of fully differentiated neurons and that this disruption is reversible.


2007 ◽  
Vol 21 (8) ◽  
pp. 1801-1812 ◽  
Author(s):  
Martin Hasshoff ◽  
Claudia Höhnisch ◽  
Daniela Tonn ◽  
Barbara Hasert ◽  
Hinrich Schulenburg

RSC Advances ◽  
2015 ◽  
Vol 5 (95) ◽  
pp. 77706-77715 ◽  
Author(s):  
Supinder Kaur ◽  
Aamir Nazir

Studies employing transgenicC. elegansmodel show that trehalose, a protein stabilizer, alleviates manifestations associated with Parkinson's diseaseviaits inherent activity and through induction of autophagic machinery.


Nematology ◽  
2009 ◽  
Vol 11 (4) ◽  
pp. 551-554
Author(s):  
Jinu Eo ◽  
Kazunori Otobe

Abstract The objective of this study was to clarify the role of touch sensors in the foraging of Caenorhabditis elegans in a constrained structure. The strains tested included an array of mechanosensory mutants insensitive to touch in the body, tail or nose. The mutants and wild type nematodes repeated forward and backward movement in a micro-moulded substrate as on the surface of agar gel. Differences in the foraging pattern were not obvious among mutant groups having different touch sensor deficit in the substrate, and all strains of nematode successfully moved out of the T-shaped structure after searching the configuration of their environment. The results suggest that the touch sensor is a weak contributor to the performance of the worms when foraging, and the behaviour is governed by intrinsic spontaneous patterns in the absence of any stimuli in natural habitat.


2015 ◽  
Vol 26 (10) ◽  
pp. 1887-1900 ◽  
Author(s):  
Steven D. Garafalo ◽  
Eric S. Luth ◽  
Benjamin J. Moss ◽  
Michael I. Monteiro ◽  
Emily Malkin ◽  
...  

Regulation of glutamate receptor (GluR) abundance at synapses by clathrin-mediated endocytosis can control synaptic strength and plasticity. We take advantage of viable, null mutations in subunits of the clathrin adaptor protein 2 (AP2) complex in Caenorhabditis elegans to characterize the in vivo role of AP2 in GluR trafficking. In contrast to our predictions for an endocytic adaptor, we found that levels of the GluR GLR-1 are decreased at synapses in the ventral nerve cord (VNC) of animals with mutations in the AP2 subunits APM-2/μ2, APA-2/α, or APS-2/σ2. Rescue experiments indicate that APM-2/μ2 functions in glr-1–expressing interneurons and the mature nervous system to promote GLR-1 levels in the VNC. Genetic analyses suggest that APM-2/μ2 acts upstream of GLR-1 endocytosis in the VNC. Consistent with this, GLR-1 accumulates in cell bodies of apm-2 mutants. However, GLR-1 does not appear to accumulate at the plasma membrane of the cell body as expected, but instead accumulates in intracellular compartments including Syntaxin-13– and RAB-14–labeled endosomes. This study reveals a novel role for the AP2 clathrin adaptor in promoting the abundance of GluRs at synapses in vivo, and implicates AP2 in the regulation of GluR trafficking at an early step in the secretory pathway.


2020 ◽  
Vol 57 ◽  
pp. 21-27 ◽  
Author(s):  
Catherine Neumann ◽  
Jessica Baesler ◽  
Gereon Steffen ◽  
Merle Marie Nicolai ◽  
Tabea Zubel ◽  
...  

2021 ◽  
Author(s):  
Omar Pena-Ramos ◽  
Lucia Chiao ◽  
Xianghua Liu ◽  
Tianyou Yao ◽  
Henry He ◽  
...  

Autophagosomes are double-membrane intracellular vesicles that degrade protein aggregates, intracellular organelles, and other cellular components. In the nematode Caenorhabditis elegans, 113 somatic cells undergo apoptosis during embryogenesis and are engulfed and degraded by their neighboring cells. We discovered a novel role of autophagosomes in facilitating the degradation of apoptotic cells in C. elegans embryos using a real-time imaging technique. Specifically, double-membrane autophagosomes in engulfing cells are recruited to the surfaces of phagosomes containing apoptotic cells and subsequently fuse to phagosomes, allowing the inner membrane to enter the phagosomal lumen. Mutants defective in the production of autophagosomes display significant delays in the degradation of apoptotic cells, demonstrating the important contribution of autophagosomes to this process. The signaling pathway led by the phagocytic receptor CED-1, CED-1s adaptor CED-6, and the large GTPase dynamin (DYN-1) promote the recruitment of autophagosomes to phagosomes. Moreover, the subsequent fusion of autophagosomes with phagosomes requires the functions of the small GTPase RAB-7 and the HOPS complex. Our findings reveal that, unlike the single-membrane, LC3- associated phagocytosis (LAP) vesicles reported for mammalian phagocytes, canonical autophagosomes function in the clearance of C. elegans apoptotic cells. These findings add autophagosomes to the collection of intracellular organelles that contribute to phagosome maturation, identify novel crosstalk between the autophagy and phagosome maturation pathways, and discover the upstream factors that initiate this crosstalk.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S865-S865
Author(s):  
Niaya James ◽  
Jessica L Scheirer ◽  
Karl Rodriguez

Abstract Karl A. Rodriguez’s laboratory at the University of Texas Health Science Center, San Antonio, Texas, is interested in the role of small heat shock proteins in the proteostasis network and aging using the model organism, Caenorhabditis elegans. Molecular chaperones facilitate protein folding and improve the degradation activity of the proteasome and autolysosome hence decreasing disease-associated aggregates. Previous work in rodents have shown an increase in expression levels of the small heat shock protein 25 (HSP-25) correlates with maximum lifespan potential. To further explore the role of HSP-25 in C. elegans, two HSP-25 knock-out strains were exposed to a one-hour heat stress, heat shock, and two non-heat stress conditions.


Sign in / Sign up

Export Citation Format

Share Document