Faculty Opinions recommendation of Contribution of Thy1+ NK cells to protective IFN-γ production during Salmonella typhimurium infections.

Author(s):  
Willem J Wiersinga ◽  
Hanna K de Jong
1998 ◽  
Vol 66 (12) ◽  
pp. 5862-5866 ◽  
Author(s):  
Martin G. Schwacha ◽  
Joseph J. Meissler ◽  
Toby K. Eisenstein

ABSTRACT Splenocytes isolated from C57BL/6J female mice 3 to 7 days after inoculation with an attenuated strain of Salmonella typhimurium produced high levels of nitric oxide (39 to 77 μM) and gamma interferon (IFN-γ). Additionally, spleen cell cultures fromSalmonella-inoculated mice were markedly suppressed in their ability to generate an in vitro plaque-forming cell (PFC) response to sheep erythrocytes. Depletion of natural killer (NK) cells from the immune splenocyte population markedly reduced nitric oxide production, prevented suppression of PFC responses, and completely abrogated IFN-γ release. Treatment of NK cell-depleted immune cells with IFN-γ restored nitric oxide production to levels comparable to those of intact immune cells and also restored the immunosuppression. These results suggest that NK cells regulate the induction of nitric oxide-mediated immunosuppression following infection with S. typhimurium through the production of IFN-γ.


PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e97418 ◽  
Author(s):  
Andreas Kupz ◽  
Roy Curtiss ◽  
Sammy Bedoui ◽  
Richard A. Strugnell

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 238.1-238
Author(s):  
Y. Shimojima ◽  
D. Kishida ◽  
T. Ichikawa ◽  
Y. Sekijima

Background:In the acute phase of adult-onset Still’s disease (AOSD), elevated levels of proinflammatory cytokines including interferon-γ (IFN-γ) are shown. Moreover, IFN-γ impacts on activating macrophages which play a crucial role in the pathogenesis of AOSD. Natural killer (NK) cells and T helper cells are in charge of secreting IFN-γ in the innate and adaptive immune systems of disease, respectively. However, the features of their IFN-γ-producing variation depending on disease activity are still uncertain in AOSD.Objectives:We investigated characteristics of IFN-γ-producing CD4+T cells and NK cells in patients with AOSD.Methods:Twenty-four patients in the acute phase of AOSD (active AOSD), 8 of them after treatment (remission), and 12 healthy controls (HC) were recruited in this study. Peripheral blood mononuclear cells and serum samples were provided from them for the experimental analysis. Flow cytometry was used for analyzing CD4+T cells, CD4+regulatory T cells (Tregs), NK cells, and their intracellular IFN-γ expression levels as well as suppression assay of Tregs. The serum concentration of interleukin-18 (IL-18) was measured using commercially available ELISA kit. Relationship between the analyzed data and clinical findings related to disease activity were statistically evaluated.Results:IFN-γ expression in CD4+T cells was significantly higher in active AOSD than in HC (p < 0.05). Tregs also significantly indicated higher expression of IFN-γ in active AOSD than in HC (p < 0.0001); and moreover, Tregs were significantly impaired in their suppression ability (p < 0.05). In both CD4+T cells and Tregs, expression of IFN-γ was significantly correlated with serum ferritin levels in active AOSD (p < 0.05). IFN-γ expression in CD4+T cells was significantly higher in patients with splenomegaly than those without that (p < 0.05). The proportion of NK cells was significantly lower in active AOSD than in HC (p < 0.005), whereas IFN-γ expression in NK cells was significantly higher in active AOSD than in HC (p < 0.0005). The number of NK cells and IFN-γ-expressing NK cells had inverse relationship with serum ferritin levels in active AOSD (p < 0.05 and p < 0.005, respectively). Increased number of NK cells and their decreased expression of IFN-γ were significantly demonstrated in remission (p < 0.05). In the analyses of NK cell subsets, lower expression of IFN-γ in CD56brightNK cells and higher that in CD56dimNK cells were significantly indicated in active AOSD than HC (p < 0.05). In remission, IFN-γ expression was significantly decreased in CD56dimNK cells (p < 0.05) despite no significant recovery of that in CD56brightNK cells (p = 0.311). Meanwhile, increased expression of IFN-γ in CD56brightNK cells was demonstrated in only patients who were treated with biologics. Although serum levels of IL-18 were significantly higher in active AOSD than in remission and HC; however, they had no significant correlations with any analyzed data.Conclusion:CD4+T cells and NK cells promote IFN-γ expression in the acute phase of AOSD. Meanwhile, increased expression of IFN-γ in CD4+T cells and decreased number of NK cells were correlated with serum ferritin levels, suggesting that they are indicators of disease activity. Furthermore, high disease activity may impact on the alteration of IFN-γ-producing balance in two distinct population of NK cells, and the plasticity of Tregs leading to defect in suppression ability.Disclosure of Interests:None declared


Immunity ◽  
2003 ◽  
Vol 19 (5) ◽  
pp. 701-711 ◽  
Author(s):  
Sandrine I Samson ◽  
Odile Richard ◽  
Manuela Tavian ◽  
Thomas Ranson ◽  
Christian A.J Vosshenrich ◽  
...  
Keyword(s):  
Nk Cells ◽  

2003 ◽  
Vol 71 (4) ◽  
pp. 2002-2008 ◽  
Author(s):  
Irma Aguilar-Delfin ◽  
Peter J. Wettstein ◽  
David H. Persing

ABSTRACT We examined the role of the cytokines gamma interferon (IFN-γ) and interleukin-12 (IL-12) in the model of acute babesiosis with the WA1 Babesia. Mice genetically deficient in IFN-γ-mediated responses (IFNGR2KO mice) and IL-12-mediated responses (Stat4KO mice) were infected with the WA1 Babesia, and observations were made on the course of infection and cytokine responses. Levels of IFN-γ and IL-12 in serum increased 24 h after parasite inoculation. The augmented susceptibility observed in IFNGR2KO and Stat-4KO mice suggests that the early IL-12- and IFN-γ-mediated responses are involved in protection against acute babesiosis. Resistance appears to correlate with an increase in nitric oxide (NO) production. In order to assess the contribution of different cell subsets to resistance against the parasite, we also studied mice lacking B cells, CD4+ T cells, NK cells, and macrophages. Mice genetically deficient in B lymphocytes or CD4+ T lymphocytes were able to mount protective responses comparable to those of immunosufficient mice. In contrast, in vivo depletion of macrophages or NK cells resulted in elevated susceptibility to the infection. Our observations suggest that a crucial part of the response that protects from the pathogenic Babesia WA1 is mediated by macrophages and NK cells, probably through early production of IL-12 and IFN-γ, and induction of macrophage-derived effector molecules like NO.


2021 ◽  
Author(s):  
P Kupke ◽  
A Adenugba ◽  
M Schemmerer ◽  
M Hornung ◽  
HJ Schlitt ◽  
...  
Keyword(s):  
Nk Cells ◽  

2009 ◽  
Vol 39 (4) ◽  
pp. 1046-1055 ◽  
Author(s):  
Elvire Bourgeois ◽  
Linh Pham Van ◽  
Michel Samson ◽  
Séverine Diem ◽  
Anne Barra ◽  
...  
Keyword(s):  
Nk Cells ◽  

2020 ◽  
Author(s):  
Yinfang Wang ◽  
Yingzhe Fan ◽  
Yitong Huang ◽  
Tao Du ◽  
Zongjun Liu ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), it binds to angiotensin-converting enzyme 2 (ACE2) to enter into human cells. The expression level of ACE2 potentially determine the susceptibility and severity of COVID-19, it is thus of importance to understand the regulatory mechanism of ACE2 expression. Tripartite motif containing 28 (TRIM28) is known to be involved in multiple processes including antiviral restriction, endogenous retrovirus latency and immune response, it is recently reported to be co-expressed with SARS-CoV-2 receptor in type II pneumocytes; however, the roles of TRIM28 in ACE2 expression and SARS-CoV-2 cell entry remain unclear. This study showed that knockdown of TRIM28 induces ACE2 expression and increases pseudotyped SARS-CoV-2 cell entry of A549 cells and primary pulmonary alveolar epithelial cells (PAEpiCs). In a co-culture model of NK cells and lung epithelial cells, our results demonstrated that NK cells inhibit TRIM28 and promote ACE2 expression in lung epithelial cells, which was partially reversed by depletion of interleukin-2 and blocking of granzyme B in the co-culture medium. Furthermore, TRIM28 knockdown enhanced interferon-γ (IFN-γ)-induced ACE2 expression through a mechanism involving upregulating IFN-γ receptor 2 (IFNGR2) in both A549 and PAEpiCs. Importantly, the upregulated ACE2 induced by TRIM28 knockdown and co-culture of NK cells was partially reversed by dexamethasone in A549 cells but not PAEpiCs. Our study identified TRIM28 as a novel regulator of ACE2 expression and SARS-CoV-2 cell entry.


Sign in / Sign up

Export Citation Format

Share Document