Faculty Opinions recommendation of Climate change and evolutionary adaptation.

Author(s):  
Philip Munday
2016 ◽  
Vol 3 (6) ◽  
pp. 160250 ◽  
Author(s):  
Catriona A. Morrison ◽  
Robert A. Robinson ◽  
James W. Pearce-Higgins

Most studies of evolutionary responses to climate change have focused on phenological responses to warming, and provide only weak evidence for evolutionary adaptation. This could be because phenological changes are more weakly linked to fitness than more direct mechanisms of climate change impacts, such as selective mortality during extreme weather events which have immediate fitness consequences for the individuals involved. Studies examining these other mechanisms may be more likely to show evidence for evolutionary adaptation. To test this, we quantify regional population responses of a small resident passerine (winter wren Troglodytes troglodytes ) to a measure of winter severity (number of frost days). Annual population growth rate was consistently negatively correlated with this measure, but the point at which different populations achieved stability ( λ  = 1) varied across regions and was closely correlated with the historic average number of frost days, providing strong evidence for local adaptation. Despite this, regional variation in abundance remained negatively related to the regional mean number of winter frost days, potentially as a result of a time-lag in the rate of evolutionary response to climate change. As expected from Bergmann's rule, individual wrens were heavier in colder regions, suggesting that local adaptation may be mediated through body size. However, there was no evidence for selective mortality of small individuals in cold years, with annual variation in mean body size uncorrelated with the number of winter frost days, so the extent to which local adaptation occurs through changes in body size, or another mechanism remains uncertain.


Author(s):  
Mark A. McPeek

This book investigates how local and regional patterns of community structure develop across space and through time by focusing on the theoretical interrelationships among community ecology, evolutionary adaptation, dispersal, and speciation and extinction. It discusses the purely ecological dynamics of interacting species in different community modules, how species in simple community modules evolve to adapt to one another, and how speciation and biogeographic mixing of taxa influence local community structure. It also examines community mixing due to climate change and how regional community structure is shaped by the ecological and evolutionary dynamics of species across a metacommunity. This introduction provides an overview of the evolutionary trajectories of various species in the context of ecological opportunity and community ecology, aggregated taxa in the trophic web, types of species found in a community, sources of biodiversity in a community, and the dynamics of natural selection, coevolution, and community structure.


Nature ◽  
2011 ◽  
Vol 470 (7335) ◽  
pp. 479-485 ◽  
Author(s):  
Ary A. Hoffmann ◽  
Carla M. Sgrò

2016 ◽  
Vol 19 (12) ◽  
pp. 1468-1478 ◽  
Author(s):  
Alex Bush ◽  
Karel Mokany ◽  
Renee Catullo ◽  
Ary Hoffmann ◽  
Vanessa Kellermann ◽  
...  

2021 ◽  
Vol 224 (7) ◽  
Author(s):  
Simon Bahrndorff ◽  
Jannik M. S. Lauritzen ◽  
Mathias H. Sørensen ◽  
Natasja K. Noer ◽  
Torsten N. Kristensen

ABSTRACT Terrestrial arthropods in the Arctic and Antarctic are exposed to extreme and variable temperatures, and climate change is predicted to be especially pronounced in these regions. Available ecophysiological studies on terrestrial ectotherms from the Arctic and Antarctic typically focus on the ability of species to tolerate the extreme low temperatures that can occur in these regions, whereas studies investigating species plasticity and the importance of evolutionary adaptation to periodically high and increasing temperatures are limited. Here, we provide an overview of current knowledge on thermal adaptation to high temperatures of terrestrial arthropods in Arctic and Antarctic regions. Firstly, we summarize the literature on heat tolerance for terrestrial arthropods in these regions, and discuss variation in heat tolerance across species, habitats and polar regions. Secondly, we discuss the potential for species to cope with increasing and more variable temperatures through thermal plasticity and evolutionary adaptation. Thirdly, we summarize our current knowledge of the underlying physiological adjustments to heat stress in arthropods from polar regions. It is clear that very little data are available on the heat tolerance of arthropods in polar regions, but that large variation in arthropod thermal tolerance exists across polar regions, habitats and species. Further, the species investigated show unique physiological adjustments to heat stress, such as their ability to respond quickly to increasing or extreme temperatures. To understand the consequences of climate change on terrestrial arthropods in polar regions, we suggest that more studies on the ability of species to cope with stressful high and variable temperatures are needed.


2010 ◽  
Vol 259 (5) ◽  
pp. 1003-1008 ◽  
Author(s):  
Anna Kuparinen ◽  
Outi Savolainen ◽  
Frank M. Schurr

2019 ◽  
Vol 9 (8) ◽  
pp. 632-636 ◽  
Author(s):  
Timothy E. Walsworth ◽  
Daniel E. Schindler ◽  
Madhavi A. Colton ◽  
Michael S. Webster ◽  
Stephen R. Palumbi ◽  
...  

2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2001 ◽  
Vol 70 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Robert Moss ◽  
James Oswald ◽  
David Baines

Sign in / Sign up

Export Citation Format

Share Document