Faculty Opinions recommendation of Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators.

Author(s):  
Julien Vermot
Keyword(s):  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Fan Jia ◽  
Li Li ◽  
Haizhou Liu ◽  
Pei Lv ◽  
Xiangwei Shi ◽  
...  

AbstractRabies virus (RV) is the most widely used vector for mapping neural circuits. Previous studies have shown that the RV glycoprotein can be a target to improve the retrograde transsynaptic tracing efficiency. However, the current versions still label only a small portion of all presynaptic neurons. Here, we reshuffled the oG sequence, a chimeric glycoprotein, with positive codon pair bias score (CPBS) based on bioinformatic analysis of mouse codon pair bias, generating ooG, a further optimized glycoprotein. Our experimental data reveal that the ooG has a higher expression level than the oG in vivo, which significantly increases the tracing efficiency by up to 12.6 and 62.1-fold compared to oG and B19G, respectively. The new tool can be used for labeling neural circuits Therefore, the approach reported here provides a convenient, efficient and universal strategy to improve protein expression for various application scenarios such as trans-synaptic tracing efficiency, cell engineering, and vaccine and oncolytic virus designs.


2006 ◽  
Vol 24 (4) ◽  
pp. 349-358 ◽  
Author(s):  
Yusuke Murayama ◽  
Bruno Weber ◽  
Kadharbatcha S. Saleem ◽  
Mark Augath ◽  
Nikos K. Logothetis
Keyword(s):  

2016 ◽  
Author(s):  
Nitin Gupta ◽  
Swikriti Saran Singh ◽  
Mark Stopfer

AbstractOscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly tested this idea in the locust olfactory system. We found that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we found that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrated that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking.


2011 ◽  
Vol 35 (2) ◽  
pp. 188-196 ◽  
Author(s):  
R. Vargas ◽  
I. þ. Jóhannesdóttir ◽  
B. Sigurgeirsson ◽  
H. þorsteinsson ◽  
K. Æ. Karlsson

Recently, the zebrafish ( Danio rerio ) has been established as a key animal model in neuroscience. Behavioral, genetic, and immunohistochemical techniques have been used to describe the connectivity of diverse neural circuits. However, few studies have used zebrafish to understand the function of cerebral structures or to study neural circuits. Information about the techniques used to obtain a workable preparation is not readily available. Here, we describe a complete protocol for obtaining in vitro and in vivo zebrafish brain preparations. In addition, we performed extracellular recordings in the whole brain, brain slices, and immobilized nonanesthetized larval zebrafish to evaluate the viability of the tissue. Each type of preparation can be used to detect spontaneous activity, to determine patterns of activity in specific brain areas with unknown functions, or to assess the functional roles of different neuronal groups during brain development in zebrafish. The technique described offers a guide that will provide innovative and broad opportunities to beginner students and researchers who are interested in the functional analysis of neuronal activity, plasticity, and neural development in the zebrafish brain.


2008 ◽  
Vol 100 (4) ◽  
pp. 2430-2440 ◽  
Author(s):  
Jun Yamamoto ◽  
Matthew A. Wilson

Multiple single-unit recording has become one of the most powerful in vivo electro-physiological techniques for studying neural circuits. The demand has been increasing for small and lightweight chronic recording devices that allow fine adjustments to be made over large numbers of electrodes across multiple brain regions. To achieve this, we developed precision motorized microdrive arrays that use a novel motor multiplexing headstage to dramatically reduce wiring while preserving precision of the microdrive control. Versions of the microdrive array were chronically implanted on both rats (21 microdrives) and mice (7 microdrives), and relatively long-term recordings were taken.


2018 ◽  
Author(s):  
Shuting Han ◽  
Weijian Yang ◽  
Rafael Yuste

To capture the emergent properties of neural circuits, high-speed volumetric imaging of neural activity at cellular resolution is desirable. But while conventional two-photon calcium imaging is a powerful tool to study population activity in vivo, it is restrained to two-dimensional planes. Expanding it to 3D while maintaining high spatiotemporal resolution appears necessary. Here, we developed a two-photon microscope with dual-color laser excitation that can image neural activity in a 3D volume. We imaged the neuronal activity of primary visual cortex from awake mice, spanning from L2 to L5 with 10 planes, at a rate of 10 vol/sec, and demonstrated volumetric imaging of L1 long-range PFC projections and L2/3 somatas. Using this method, we map visually-evoked neuronal ensembles in 3D, finding a lack of columnar structure in orientation responses and revealing functional correlations between cortical layers which differ from trial to trial and are missed in sequential imaging. We also reveal functional interactions between presynaptic L1 axons and postsynaptic L2/3 neurons. Volumetric two-photon imaging appears an ideal method for functional connectomics of neural circuits.


2016 ◽  
Vol 27 (2) ◽  
pp. 78
Author(s):  
Simon Gelman

Optogenetics is a novel technology with the widely acknowledged potential to revolutionize cell biology and neuroscience. Essentially, optogenetic methods integrate optical and genetic tools to control the activity of whole cells or subcellular events. In recent years, optogenetics has been used to activate and to inhibit genetically defined neuronal populations within neural circuits. As such, it has been used to show the sufficiency or the necessity of specific neuronal cell types in generating behaviors across a number of animal species. When employed in rodent models of human neurological and psychiatric disorders, optogenetics has provided clinically relevant insights into the function of pathologic neural circuits. Recent progress in the in vivo applications of this methodology is reviewed in this article, with particular focus on behavioral applications in nematodes, fish, rodents, and nonhuman primates.


2021 ◽  
Author(s):  
Lloyd E. Russell ◽  
Henry W.P. Dalgleish ◽  
Rebecca Nutbrown ◽  
Oliver Gauld ◽  
Dustin Herrmann ◽  
...  

Recent advances combining two-photon calcium imaging and two-photon optogenetics with digital holography now allow us to read and write neural activity in vivo at cellular resolution with millisecond temporal precision. Such 'all-optical' techniques enable experimenters to probe the impact of functionally defined neurons on neural circuit function and behavioural output with new levels of precision. This protocol describes the experimental strategy and workflow for successful completion of typical all-optical interrogation experiments in awake, behaving head-fixed mice. We describe modular procedures for the setup and calibration of an all-optical system, the preparation of an indicator and opsin-expressing and task-performing animal, the characterization of functional and photostimulation responses and the design and implementation of an all-optical experiment. We discuss optimizations for efficiently selecting and targeting neuronal ensembles for photostimulation sequences, as well as generating photostimulation response maps from the imaging data that can be used to examine the impact of photostimulation on the local circuit. We demonstrate the utility of this strategy using all-optical experiments in three different brain areas - barrel cortex, visual cortex and hippocampus - using different experimental setups. This approach can in principle be adapted to any brain area for all-optical interrogation experiments to probe functional connectivity in neural circuits and for investigating the relationship between neural circuit activity and behaviour.


2017 ◽  
Author(s):  
Yusuke Hirabayashi ◽  
Juan Carlos Tapia ◽  
Franck Polleux

A challenging aspect of neuroscience revolves around mapping the synaptic connections within neural circuits (connectomics) over scales spanning several orders of magnitude (nanometers to meters). Despite significant improvements in serial section electron microscopy (SSEM) technologies, several major roadblocks have impaired its general applicability to mammalian neural circuits. In the present study, we introduce a new approach that circumvents these roadblocks by adapting a genetically-encoded ascorbate peroxidase (APEX2) as a fusion protein to a membrane-targeted fluorescent reporter (CAAX-Venus), and introduce it in single pyramidal neurons in vivo using extremely sparse in utero cortical electroporation (IUCE). This approach allows to perform Correlated Light-SSEM (CoLSSEM) on individual neurons, reconstructing their dendritic and axonal arborization in a targeted way via combination of high-resolution confocal microscopy, and subsequently imaging of its ultrastuctural features and synaptic connections with the ATUM-SEM (automated tape-collecting ultramicrotome - scanning electron microscopy) technology. Our method significantly improves the the feasibility of large-scale reconstructions of neurons within a circuit, and bridges the description of ultrastructural features of genetically-identified neurons with their functional and/or structural connectivity, one of the main goal of connectomics.


2021 ◽  
Author(s):  
Clara M. Bacmeister ◽  
Rongchen Huang ◽  
Michael A. Thornton ◽  
Lauren Conant ◽  
Anthony R. Chavez ◽  
...  

Myelin plasticity occurs when newly-formed and pre-existing oligodendrocytes remodel existing myelination. Recent studies show these processes occur in response to changes in neuronal activity and are required for learning and memory. However, the link between behaviorally-relevant neuronal activity and circuit-specific changes in myelination remains unknown. Using longitudinal, in vivo two-photon imaging and targeted labeling of behaviorally-activated neurons, we explore how the pattern of intermittent myelination is altered on individual cortical axons during learning of a dexterous reach task. We show that learning-induced plasticity is targeted to behaviorally-activated axons and occurs in a staged response across cortical layers. During learning, myelin sheaths retract, lengthening nodes of Ranvier. Following learning, addition of new sheaths increases the number of continuous stretches of myelination. Computational modeling suggests these changes initially slow and subsequently increase conduction speed. Thus, behaviorally-activated, circuit-specific changes to myelination may fundamentally alter how information is transferred in neural circuits during learning.


Sign in / Sign up

Export Citation Format

Share Document