Faculty Opinions recommendation of Polyploidy can drive rapid adaptation in yeast.

Author(s):  
Yves Van de Peer
Keyword(s):  
2021 ◽  
pp. 103530462098360
Author(s):  
Fiona Jenkins ◽  
Julie Smith

In the COVID-19 pandemic, people’s dwellings suddenly became a predominant site of economic activity. We argue that, predictably, policy-makers and employers took the home for granted as a background support of economic life. Acting as if home is a cost-less resource that is free for appropriation in an emergency, ignoring how home functions as a site of gendered relations of care and labour, and assuming home is a largely harmonious site, all shaped the invisibility of the imposition. Taking employee flexibility for granted and presenting work-from-home as a privilege offered by generous employers assumed rapid adaptation. As Australia emerges from lockdown, ‘building back better’ to meet future shocks entails better supporting adaptive capabilities of workers in the care economy, and of homes that have likewise played an unacknowledged role as buffer and shelter for the economy. Investing in infrastructure capable of providing a more equitable basis for future resilience is urgent to reap the benefits that work-from-home offers. This article points to the need for rethinking public investment and infrastructure priorities for economic recovery and reconstruction in the light of a gender perspective on COVID-19 ‘lockdown’ experience. JEL Codes: E01, E22, J24


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chunyan Li ◽  
Melisa Olave ◽  
Yali Hou ◽  
Geng Qin ◽  
Ralf F. Schneider ◽  
...  

AbstractSeahorses have a circum-global distribution in tropical to temperate coastal waters. Yet, seahorses show many adaptations for a sedentary, cryptic lifestyle: they require specific habitats, such as seagrass, kelp or coral reefs, lack pelvic and caudal fins, and give birth to directly developed offspring without pronounced pelagic larval stage, rendering long-range dispersal by conventional means inefficient. Here we investigate seahorses’ worldwide dispersal and biogeographic patterns based on a de novo genome assembly of Hippocampus erectus as well as 358 re-sequenced genomes from 21 species. Seahorses evolved in the late Oligocene and subsequent circum-global colonization routes are identified and linked to changing dynamics in ocean currents and paleo-temporal seaway openings. Furthermore, the genetic basis of the recurring “bony spines” adaptive phenotype is linked to independent substitutions in a key developmental gene. Analyses thus suggest that rafting via ocean currents compensates for poor dispersal and rapid adaptation facilitates colonizing new habitats.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 293
Author(s):  
Selene S. C. Nogueira ◽  
Sérgio L. G. Nogueira-Filho ◽  
José M. B. Duarte ◽  
Michael Mendl

Within a species, some individuals are better able to cope with threatening environments than others. Paca (Cuniculus paca) appear resilient to over-hunting by humans, which may be related to the behavioural plasticity shown by this species. To investigate this, we submitted captive pacas to temperament tests designed to assess individual responses to short challenges and judgement bias tests (JBT) to evaluate individuals’ affective states. Results indicated across-time and context stability in closely correlated “agitated”, “fearful” and “tense” responses; this temperament dimension was labelled “restless”. Individual “restless” scores predicted responses to novelty, although not to simulated chasing and capture by humans in a separate modified defence test battery (MDTB). Restless animals were more likely to show a greater proportion of positive responses to an ambiguous cue during JBT after the MDTB. Plasticity in defensive behaviour was inferred from changes in behavioural responses and apparently rapid adaptation to challenge in the different phases of the MDTB. The results indicate that both temperament and behavioural plasticity may play a role in influencing paca responses to risky situations. Therefore, our study highlights the importance of understanding the role of individual temperament traits and behavioural plasticity in order to better interpret the animals’ conservation status and vulnerabilities.


2019 ◽  
Vol 116 (19) ◽  
pp. 9463-9468 ◽  
Author(s):  
Katherine S. Geist ◽  
Joan E. Strassmann ◽  
David C. Queller

Evolutionary conflict can drive rapid adaptive evolution, sometimes called an arms race, because each party needs to respond continually to the adaptations of the other. Evidence for such arms races can sometimes be seen in morphology, in behavior, or in the genes underlying sexual interactions of host−pathogen interactions, but is rarely predicted a priori. Kin selection theory predicts that conflicts of interest should usually be reduced but not eliminated among genetic relatives, but there is little evidence as to whether conflict within families can drive rapid adaptation. Here we test multiple predictions about how conflict over the amount of resources an offspring receives from its parent would drive rapid molecular evolution in seed tissues of the flowering plant Arabidopsis. As predicted, there is more adaptive evolution in genes expressed in Arabidopsis seeds than in other specialized organs, more in endosperms and maternal tissues than in embryos, and more in the specific subtissues involved in nutrient transfer. In the absence of credible alternative hypotheses, these results suggest that kin selection and conflict are important in plants, that the conflict includes not just the mother and offspring but also the triploid endosperm, and that, despite the conflict-reducing role of kinship, family members can engage in slow but steady tortoise-like arms races.


2021 ◽  
Author(s):  
Adrian Gorecki ◽  
Stine Holm ◽  
Mikolaj Dziurzynski ◽  
Matthias Winkel ◽  
Sizhong Yang ◽  
...  

AbstractPlasmids have the potential to transfer genetic traits within bacterial communities and thereby serve as a crucial tool for the rapid adaptation of bacteria in response to changing environmental conditions. Our knowledge of the environmental pool of plasmids (the metaplasmidome) and encoded functions is still limited due to a lack of sufficient extraction methods and tools for identifying and assembling plasmids from metagenomic datasets. Here, we present the first insights into the functional potential of the metaplasmidome of permafrost-affected active-layer soil—an environment with a relatively low biomass and seasonal freeze–thaw cycles that is strongly affected by global warming. The obtained results were compared with plasmid-derived sequences extracted from polar metagenomes. Metaplasmidomes from the Siberian active layer were enriched via cultivation, which resulted in a longer contig length as compared with plasmids that had been directly retrieved from the metagenomes of polar environments. The predicted hosts of plasmids belonged to Moraxellaceae, Pseudomonadaceae, Enterobacteriaceae, Pectobacteriaceae, Burkholderiaceae, and Firmicutes. Analysis of their genetic content revealed the presence of stress-response genes, including antibiotic and metal resistance determinants, as well as genes encoding protectants against the cold.


1996 ◽  
Vol 75 (1) ◽  
pp. 60-74 ◽  
Author(s):  
D. L. Weeks ◽  
M. P. Aubert ◽  
A. G. Feldman ◽  
M. F. Levin

1. We analyzed the rapid adaptation of elbow movement to unexpected changes in external load conditions at the elbow joint. The experimental approach was based on the lambda model, which defines control variables (CVs) setting the positional frames of reference for recruitment of flexor and extensor motoneurons. CVs may be specified by the nervous system independently of the current values of output variable such as electromyographic (EMG) activity, muscle torques, and kinematics. The CV R specifies the referent joint angle (R) at which the transition of flexor to extensor activity or vice versa can be observed during changes in the actual joint angle, theta, elicited by an external force. The other CV, the coactivation (C) command, instead of a single transition angle, defines an angular range in which flexor and extensor muscles may be simultaneously active (if C > 0) or silent (if C < 0). Changes in the R command result in shifts in the equilibrium state of the system, a dynamic process leading to EMG modifications resulting in movement or isometric force production if movement is obstructed. Fast movements are likely produced by combining the R command with a positive C command, which provides movement stability and effective energy dissipation, diminishing oscillations at the end of movement. 2. According to the model, changes in the load characteristic (e.g., from a 0 to a springlike load) influence the system's equilibrium state, leading to a positional error. This error may be corrected by a secondary movement produced by additional changes in R and C commands. In subsequent trials, the system may reproduce the CVs specified after correction in the previous trial. This behavior is called the recurrent strategy. It allows the system to adapt to the new load condition in the subsequent trials without corrections (1-trial adaptation). Alternatively, the system may reproduce the CVs specified before correction (invariant strategy). If the movement was perturbed only in a single trial, the invariant strategy allows the system to reach the target in the subsequent trials without corrections. 3. To test the assumption on the dominant role of the recurrent strategy in rapid adaptation of movement to new load conditions, we performed experiments in which subjects (n = 6) used a pivoting manipulandum and made fast 60 degrees movements to a target. After a random number of trials (5-10) with no load, we introduced opposing (experiment 1), assisting (experiment 2), or randomly varied opposing or assisting loads (experiment 3) for 5-10 trials before unexpectedly switching loads again (14-18 switches in total). The opposing or assisting torque was created by position feedback to a torque motor and was a linear function of the displacement of the manipulandum form the initial position (springlike load). Subjects were instructed to correct positional errors as soon as possible to reach the target. The EMG activity of two elbow flexors (biceps brachii and brachioradialis) and two elbow extensors (triceps brachii and anconeus), elbow position, velocity, and torque were recorded. Kinematic and EMG patterns were compared with those obtained in similar experiments in which subjects were instructed not to correct errors. 4. In 94% of the trials in which a change in the load occurred, the primary movement was in error and was followed by a corrective secondary movement. In primary movements, both the phasic and tonic levels of EMG activity as well as the kinematics were load dependent, implicating reflex and intramuscular mechanisms in the adaptation of muscle forces counteracting external loads. These mechanisms, however, were not sufficient to eliminate positional errors. 5. An undershoot error occurred in trials with an opposing load after those with no load or in trials with no load after those with an assisting load. After adaptation to a new load condition, a sudden return to the previous load condition resulted in an error of the oppo


1998 ◽  
Vol 79 (2) ◽  
pp. 704-715 ◽  
Author(s):  
Charles A. Scudder ◽  
Ekatherina Y. Batourina ◽  
George S. Tunder

Scudder, Charles A., Ekatherina Y. Batourina, and George S. Tunder. Comparison of two methods of producing adaptation of saccade size and implications for the site of plasticity. J. Neurophysiol. 79: 704–715, 1998. Saccade accuracy is known to be maintained by adaptive mechanisms that progressively reduce any visual error that consistently exists at the end of saccades. Experimentally, the visual error is induced using one of two paradigms. In the first, the horizontal and medial recti of trained monkeys are tenectomized and allowed to reattach so that both muscles are paretic. After patching the unoperated eye and forcing the monkey to use the “paretic eye,” saccades initially undershoot the intended target, but gradually increase in size until they almost acquire the target in one step. In the second, the target of a saccade is displaced in midsaccade so that the saccade cannot land on target. Again saccade size adapts until the target can be acquired in one step. Because adaptation with the latter paradigm is very rapid but adaptation using the former is slow, it has frequently been questioned whether or not the two forms of adaptation depend on the same neural mechanisms. We show that the rate of adaptation in both paradigms depends on the number of possible visual targets, so that when this variable is equated, adaptation occurs at similar rates in both paradigms. To demonstrate further similarities between the result of the two paradigms, an experiment using intrasaccadic displacements was conducted to show that rapid adaptation possesses the capacity to produce gain changes that vary with orbital position. The relative size of intrasaccadic displacements were graded with orbital position so as to mimic the position-dependent dysmetria initially produced by a single paretic extraocular muscle. Induced changes in saccade size paralleled the size of the displacements, being largest for saccades into one hemifield and being negligible for saccades into the other hemifield or in the opposite direction. Collectively, the data remove the rational for asserting that adaptation produced by the two paradigms depends on separate neural mechanisms. We argue that adaptation produced by both paradigms depends on the cerebellum.


Sign in / Sign up

Export Citation Format

Share Document