Faculty Opinions recommendation of The mTORC1 inhibitor everolimus has antitumor activity in vitro and produces tumor responses in patients with relapsed T-cell lymphoma.

Author(s):  
Bruce Smoller
Blood ◽  
2015 ◽  
Vol 126 (3) ◽  
pp. 328-335 ◽  
Author(s):  
Thomas E. Witzig ◽  
Craig Reeder ◽  
Jing Jing Han ◽  
Betsy LaPlant ◽  
Mary Stenson ◽  
...  

Key Points The mTOR pathway is constitutively activated in the TCL cells and is responsible for TCL proliferation. This is first trial to demonstrate that mTORC1 inhibitors (everolimus) have substantial antitumor activity (44% overall response rate) in patients with relapsed TCL.


Author(s):  
Amber Loren O. King ◽  
Fatima N. Mirza ◽  
Julia M. Lewis ◽  
Shiela Umlauf ◽  
Yulia Surosteva ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2767-2767
Author(s):  
Waseem Lone ◽  
Alyssa Bouska ◽  
Tyler Herek ◽  
Catalina Amador ◽  
Mallick Saumyaranajn ◽  
...  

Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of non-Hodgkin lymphomas and approximately 30% of PTCLs are designated as not-otherwise specified (PTCL-NOS). Gene expression profiling (GEP) identified molecular classifiers for PTCL entities and identified 2 novel biological subgroups within PTCL-NOS (PTCL-GATA3 and PTCL-TBX21), associated with T-cell differentiation subsets. To further investigate molecular oncogenesis, we performed microRNA expression profiling (miR-EP) in several molecular subtypes of PTCL including angioimmunoblastic T-cell lymphoma (AITL), PTCL-GATA3 and PTCL-TBX21 using formalin fixed paraffin embedded tissues. We also performed miR-EP of normal T-cell subsets polarized to represent different differentiation stages (TFH, TH1 and TH2). We performed miR-EP on 102 PTCL cases using either quantitative real time PCR (ABI, Biosystem) or ultra-sensitive direct miRNA counting (nCounter, NanoString). Corresponding GEP (mRNA) were available for 67 PTCL cases. Normal T-cells were polarized in-vitro with different cytokine milieu and examined by flow cytometry. We observed distinct miRNA profiles, with miRNA being uniquely expressed in TFH polarized cells (miR-26a-5p, miR-17-5p, miR-30d-5p, miR-22-3p, miR-222-3p, miR-142-3p, let-7i-5p and miR-29b-3p). In contrast, the TH1 lineage was enriched for expression of miR-155-5p, miR-146a-5p, miR-1246, miR-93-5p, miR-16-5p, miR-21-5p, miR-363-3p, miR-1260a, miR-186-5p, miR-148a-3p and miR-579-3p, whereas TH2 polarized cells expressed miR-181a-5p, let-7a-5p, miR-191-5p, miR-15b-5p, let-7d-5p, let-7b-5p, miR-140-5p, miR-98-5p, miR-423-5p and miR-630. Several of these miRNA expressed in the T-cells subsets showed corresponding expression in their respective PTCL entity such as miR-142-3p, let7i-5p, miR-21-5p and miR-29b-3p with AITL, miR-146-5p, miR-155-5p and miR-16-5p in PTCL-TBX21 and miR-181a-5p, miR-630 and let7a-5p in PTCL-GATA3. We also performed the MiRNA Enrichment Analysis and Annotation (miEAA) for miRNA signatures and observed an enrichment of miRNA regulating epigenetic modifications in TFH cells (p=0.028), whereas TH1 showed an enrichment of miRNA regulating IFN-g signaling (p=0.0024), and miRNA signatures in TH2 showed negative regulation of TGF-b signaling (p=0.023). Supervised analysis (p=0.05) of the miRNA profiles identified significant association of miR-126, miR-145, and let-7c-5p with AITL, when compared to other PTCLs. Similarly, miR-92a, miR-25, miR-636, miR-210, miR-222 and miR-491-5p significantly associated with PTCL-GATA3 and miRNA 126-3p, 145-5p, miR-26a-5p and miR-34a-5p associated with PTCL-TBX21. The miEAA for tumor miRNA signatures revealed enrichment of miRNAs regulating histone methylation (h3 k4 methylation) and chemokine receptor signaling in AITL, whereas miRNA regulating T-cell receptor were enriched in PTCL-TBX21 and TP53 signaling pathway in PTCL-GATA3. We validated the expression of miR-126 in AITL by qRT-PCR and also observed its increased expression in IL21 stimulated CD4+ T-cells. Ectopic expression of miR-126 resulted in a ~3 fold increased expression in T-cell lines and led to reduced proliferation and increased apoptosis with expression of T-cell exhaustion makers PD1 and TIM3. Computational algorithmic programs identified relevant biological targets of miR-126, including p85/PIK3R2, S1PR2 and DNMT3A that were further validated in-vitro. We observed an inverse correlation of miR-126 expression with S1PR2 expression (r=-0.64). S1PR2 is a crucial G protein-coupled receptor regulating B and T-cell migration in the germinal center (GC) reaction. Migration assays demonstrated significant decreases in T to B-cell migration, when B-cells (Raji) were co-cultured with Jurkat cells with ectopic expression of miR-126. With the GC reaction holding an important role in AITL, we investigated the biological significance of miRNA-126 in the context of the AITL microenvironment. High expression of miRNA-126 significantly associated with inferior survival in AITL (p=0.008) and significant differences in tumor microenvironment signatures. We identified distinct miRNA signatures for AITL and molecular subgroups of PTCL-NOS. Furthermore, elevated expression of miR-126 may contribute to the dysregulation and the homing of TFH cells in GC reaction through S1PR2 and warrants further mechanistic investigation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1381-1381
Author(s):  
Chunlei Zhang ◽  
Baoqiang Li ◽  
Rakhshandra Talpur ◽  
C. Cameron Yin ◽  
Madeleine Duvic

Abstract Profiling gene expression with DNA microarray technology has elucidated novel therapeutic targets and led the approval of a number of targeted therapeutic agents for the treatment of cancer. Vorinostat (suberoylanilide hydroxamic acid, SAHA) is a pan-histone deacetylase (HDAC) inhibitor that has demonstrated an overall response rate of approximately 24–30% in two phase II studies of cutaneous T cell lymphoma (CTCL) patients. There are currently no known specific biomarkers to indicate resistance to vorinostat. To identify genes resistant to vorinostat we compared profiles using the Aligent whole human genome oligo microarrays containing ∼41,000 genes/transcripts in vitro in vorinostat-resistant MJ and -sensitive HH CTCL cell lines treated with 1 μM of vorinostat for 24 hours and compared them to patients’ peripheral blood mononuclear cells (PBMCs) before and during oral therapy. There were 3151 (7.7%) genes/transcripts differentially expressed in vitro in treated resistant MJ cells compared to untreated vehicle control (p < 0.001). We also studied differential gene expression in two clinically resistant Sézary patients’ PBMCs taken at baseline and four weeks after oral vorinostat (400 mg daily or 300 mg bid 3 days/wk). In patients’ PBMCs, 585 (1.4%) and 2744 (6.7%) differentially expressed genes/transcripts (p < 0.001) were identified, respectively. Genes that were up-regulated both in vitro and in vivo included a tumor necrosis factor receptor super-family member 11a (TNFRSF11a or RANK), matrix metallopeptidase 9 (MMP9), suppressor of cytokine signaling 3 (SOCS3), vinculin (VCL) and KIAA1840. Genes that were down-regulated in both included adenylate kinase 3-like 1 (AK3L1), leucine rich repeat and fibronectin type III domain containing 4 (LRFN4), and AL359650. Increased RANK, MMP9 and SOCS3 mRNA expression in MJ compared to HH cells and in three resistant versus three vorinostat responding Sézary patients’ PBMCs was confirmed using quantitative real-time PCR. In conclusion, our results suggest that oligonucleotide microarray analysis may identify biomarkers of resistance to vorinostat which would be helpful to select patients who may not benefit from treatment. These findings provide the rationale for future functional studies and development of more effective use of HDAC inhibitors for CTCL patients.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3937-3937 ◽  
Author(s):  
Enrica Marchi ◽  
Danielle C Bongero ◽  
Matko Kalac ◽  
Luigi Scotto ◽  
Owen A. O'Connor

Abstract Abstract 3937 CHOP and CHOP-like chemotherapy programs remain the most commonly used regimens for the treatment of peripheral T-cell lymphomas (PTCLs) despite often sub-optimal results. Histone deacetylase inhibitors (HDACIs) are epigenetic agents known to be active in T-cell lymphoma. Recently romidepsin (R) was approved for patients with relapsed or refractory CTCL. Both R and belinostat (B) are being investigated in patients with relapsed or refractory PTCL. We have previously shown that hypomethylating agents as decitabine (D) produce synergistic interactions with HDACIs in B-cell lymphomas. We investigated the in vitro and in vivo activity of D, R and B alone or in combination in different T-cell lymphoma and leukemia cell lines including CTCL (H9, HH), and T- acute lymphoblastic leukemia (T-ALL) lines resistant to gamma-secretase inhibitors (GSI) (P12, PF-382). For all cytotoxicity assays, luminescent cell viability was performed using CellTiter-Glo™ followed by acquisition on a Biotek Synergy HT. The IC50s for D, B and R were calculated using the Calcusyn software (Biosoft). Drug: drug interactions were analyzed using the calculation of the relative risk ratios (RRR) based on the GraphPad software (RRR<1 are defining synergism). Apoptosis was assessed by staining with Yo-Pro-1 and propidium iodine followed by FACSCalibur acquisition. Whole cell lysate proteins were extracted and quantified according to Bradford assay. After electrophoresis on a gradient 4–20% SDS-PAGE gels the proteins were transferred to nitrocellulose membrane. After blocking and incubation with the primary and the secondary antibodies, the chemiluminescent agent was added and the x-ray films were exposed to the membranes. The IC50s for belinostat alone at 24, 48 and 72 hours were generally in the nanomolar range: H9: 108.1nM – 35.7nM – 29.1nM; HH: 240.1nM - 67.6nM – 39.01nM; P12: 386.9nM – 99.9nM – 99.8nM; PF 382: 267.1nM – 135nM – 118.3nM. The IC50s for romidepsin alone at 24, 48 and 72 hours were generally in the low nanomolar range: H9: 5nM – 2.1nM – 2.2nM; HH: 14nM – 2.6nM - 2.5nM; P12: 6.2nM – 2.4nM – 2.1nM; PF382: 6.1nM – 1.7nM – 1.5nM. The IC50s for D alone at 72 and 96 hours were in the micromolar range: H9: 7.4uM – 3.7uM; HH: > 20 uM. In the cytotoxicity assays, the combination of D and B or R at 72 hours showed synergism in all the cell lines studied. The most representative RRRs are showed in table 1. Table 1 D 0.5 uM 1uM B (nM) RRR H9 50 0.7 0.7 70 0.6 0.6 100 0.4 0.5 PF 382 150 0.8 0.7 0.5 uM 1 uM R (nM) RRR H9 0.5 0.9 0.9 1 0.8 0.8 2 0.3 0.3 PF 382 1 0.8 0.7 1.5 0.4 0.4 2 0.1 0.1 When H9, HH, P12 and PF382 cell lines were treated with D and B or R for 72 hours, all the combination groups showed significantly more apoptosis than the single drug exposures and controls. Table 2 displays the range of apoptosis induction for B, R and D or for them used in combination and the RRR value after the analysis for the most significant data. Table 2 B D B + D RRR (% Apoptotic + Dead Cells) H9 100nM (22.9%) 500nM (17.9%) 51.5% 0.7 HH 100nM (42.9%) 1uM (46.9%) 61.3% 0.8 P 12 150nM (16%) 1uM (42.7%) 80.1% 0.4 PF 382 100nM (8.3%) 1uM (27.9%) 40.1% 0.8 R D R + D H9 2nM (22.2%) 500nM (17.9%) 63.6% 0.5 HH 2nM (80%) 1uM (46.9%) 89.7% 0.6 P 12 2nM (9.9%) 10uM (58.7%) 98% 0.03 PF 382 2nM (54.5%) 500nM (17.9%) 88.7% 0.2 Increased acetylation of H3 was observed when H9 cells were treated with R alone and synergistically increased after exposing cells to the combination of D + B and D + R. The expression of phosphorylated Stat3 was decreased after exposure of H9 cells to the combination of D and R. Additional interrogation of the effects of this epigenetic therapy on the JAK-STAT signaling pathway are now underway. An in vivo xenograft study in six to eight weeks old female SCID beige mice injected subcutaneously with 2 × 107 HH cells has also begun and will be reported. Mice were separated into different cohorts and treated with intraperitoneal injections of D or B or their combination according to the following schedules: D alone at 1.5 mg/kg on days 1, 5; B alone at 35 mg/Kg/day for 7 days. Collectively, the data suggest that the combination of a hypomethylating agent like D and a HDACI (B and R) are synergistic in in vitro models of human T-cell lymphoma, and may lead to a new platform for the treatment of these diseases. Disclosures: O'Connor: Millennium Pharmaceuticals, Inc.: Membership on an entity's Board of Directors or advisory committees, Research Funding.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e13569-e13569
Author(s):  
Enrica Marchi ◽  
Matko Kalac ◽  
Danielle Bongero ◽  
Christine McIntosh ◽  
Laura K Fogli ◽  
...  

e13569 Background: CHOP and CHOP-like chemotherapy are the most used regimens for the treatment of peripheral T-cell lymphomas (PTCLs) despite sub-optimal results. Histone deacetylase inhibitors (HDACIs) have shown class activity in PTCLs. The interaction between the HDACIs (depsipeptide (R), belinostat (B), vorinostat (V) and panobinostat (P)) and a DNMT inhibitor (decitabine (D) was investigated in vitro, in vivo and at the molecular level in T-cell lymphoma and leukemia cell lines (H9, HH, P12, PF-382). Methods: For cytotoxicity assays, luminescence cell viability assay was used (CellTiter-Glo). Drug:drug interactions were analyzed with relative risk ratios (RRR) based on the GraphPad software (RRR<1 defining synergism). Apoptosis was assessed by Yo-Pro-1 and propidium iodine followed by FACSCalibur acquisition. Gene expression profiling was analyzed using Illumina Human HT-12 v4 Expression BeadChip microarrays and Gene Spring Software for the analysis. Results: The IC50s for B, R, V, P, D and 5-Azacytidine alone were assessed at 24, 48 and 72 hours. In cytotoxicity assays the combination of D plus B, R, V or P at 72 hours showed synergism in all the cell lines (RRRs 0.0007-0.9). All the cell lines were treated with D, B or R for 72 hours and all the combinations showed significantly more apoptosis than the single drug exposures and controls (RRR < 1). In vivo, HH SCID beige mice were treated i.p. for 3 cycles with the vehicle solution, D or B or their combination at increasing dose. The combination cohort showed statistically significant tumor growth inhibition compared to all the other cohorts. Gene expression analysis revealed differentially expressed genes and modulated pathways for each of the single agent treatment and the combination. The effects of the two drugs were largely different (only 39 genes modified in common). Most of the effects induced by the single agent were maintained in the combination group. Interestingly, 944 genes were modulated uniquely by the combination treatment. Conclusions: The combination of a DNMTI and HDACIs is strongly synergistic in vitro, in vivo and at the molecular level in model of T-cell lymphoma and these data will constitute the basis for a phase I-II clinical trials.


Sign in / Sign up

Export Citation Format

Share Document