Quantity of supplementary LED lightings regulates photosynthetic apparatus, improves photosynthetic capacity and enhances productivity of Cos lettuce grown in a tropical greenhouse

Author(s):  
Jie He ◽  
Nur Khairunnisa Bte Jawahir ◽  
Lin Qin
HortScience ◽  
2017 ◽  
Vol 52 (11) ◽  
pp. 1464-1470 ◽  
Author(s):  
Lingyun Yuan ◽  
Yujie Yuan ◽  
Shan Liu ◽  
Jie Wang ◽  
Shidong Zhu ◽  
...  

High temperature (HT) is a major environmental stress limiting oversummer production of nonheading Chinese cabbage (NHCC, Brassica campestris ssp. chinensis Makino). In the present study, the effects of HT on photosynthetic capacity, including light reaction and carbon assimilation, were completely investigated in two NHCC, ‘xd’ (heat-tolerant), and ‘sym’ (heat-susceptible). The two genotypes showed significant differences in plant morphology, photosynthetic capacity, and photosynthate metabolism (carboassimilation). HT caused a decrease in photosynthesis, chlorophyll contents, and photochemical activity in NHCC. However, these main photosynthetic-related parameters, including net photosynthetic rate (PN), maximal photochemical efficiency of PSII (Fv/Fm), and total chlorophyll content in ‘xd’, were significantly higher than those of ‘sym’ plants. The antioxidant contents and antioxidative enzyme activities of ascorbic acid-reduced glutathione cycle in the chloroplast of ‘xd’ were significantly higher than those of ‘sym’. Microscopic analyses revealed that HT affected the structure of photosynthetic apparatus and membrane integrity to a different extent, whereas ‘xd’ could maintain a better integrated chloroplast shape and thylakoid. Inhibited light reaction also hampered carbon assimilation, resulting in a decline of carboxylation efficiency and imbalance of carbohydrate metabolism. However, larger declined extents in these data were presented in ‘sym’ (heat-susceptible) than ‘xd’ (heat-tolerant). The heat-tolerant genotype ‘xd’ had a better capacity for self-protection by improved light reaction and carbon assimilation responding to HT stress.


2004 ◽  
Vol 39 (7) ◽  
pp. 615-623 ◽  
Author(s):  
Rafael Vasconcelos Ribeiro ◽  
Mauro Guida dos Santos ◽  
Gustavo Maia Souza ◽  
Eduardo Caruso Machado ◽  
Ricardo Ferraz de Oliveira ◽  
...  

Photosynthetic responses to daily environmental changes were studied in bean (Phaseolus vulgaris L.) genotypes 'Carioca', 'Ouro Negro', and Guarumbé. Light response curves of CO2 assimilation and stomatal conductance (g s) were also evaluated under controlled (optimum) environmental condition. Under this condition, CO2 assimilation of 'Carioca' was not saturated at 2,000 µmol m-2 s-1, whereas Guarumbé and 'Ouro Negro' exhibited different levels of light saturation. All genotypes showed dynamic photoinhibition and reversible increase in the minimum chlorophyll fluorescence yield under natural condition, as well as lower photosynthetic capacity when compared with optimum environmental condition. Since differences in g s were not observed between natural and controlled conditions for Guarumbé and 'Ouro Negro', the lower photosynthetic capacity of these genotypes under natural condition seems to be caused by high temperature effects on biochemical reactions, as suggested by increased alternative electron sinks. The highest g s values of 'Carioca' were observed at controlled condition, providing evidences that reduction of photosynthetic capacity at natural condition was due to low g s in addition to the high temperature effects on the photosynthetic apparatus. 'Carioca' exhibited the highest photosynthetic rates under optimum environmental condition, and was more affected by daily changes of air temperature and leaf-to-air vapor pressure difference.


1999 ◽  
Vol 124 (4) ◽  
pp. 377-380 ◽  
Author(s):  
Francesco Loreto ◽  
Domenico Tricoli ◽  
Mauro Centritto ◽  
Arturo Alvino ◽  
Sebastiano Delfine

Short-term fumigation with 1% methanol in air was carried out to investigate effects on the photosynthetic apparatus of horticultural species characterized by leaves with different stomatal distribution. Methanol decreased the photosynthetic capacity of all species. The hypostomatous cherry (Prunus avium L.) was the most sensitive species. Between the two amphistomatous species, the effect was smaller in pepper (Capsicum annuum L. var. annuum) than in melon (Cucumis melo L.). A 4-minute fumigation caused a stronger inhibition of photosynthesis than a 90-second fumigation. The time course of the inhibition of the photosynthetic electron transport following a methanol fumigation of cherry leaves suggests that methanol starts inhibiting photosynthesis and photorespiration after ≈60 seconds and that the effect is complete after 180 seconds. This inhibition is not permanent, however, since gas-exchange properties recovered within 24 hours. Methanol vapor effects were greatest when leaves were fumigated on the surfaces with stomata. However, fumigation with methanol does not affect stomatal conductance. Therefore, inhibition of photosynthesis following methanol fumigation can be attributed to a temporary inhibition of biochemical reactions.


2000 ◽  
Vol 27 (2) ◽  
pp. 129 ◽  
Author(s):  
Isabel Fleck ◽  
Xavier Aranda ◽  
Bouchra El Omari ◽  
Jon Permanyer ◽  
Anunciación Abadía ◽  
...  

Holm oak (Quercus ilex) plants that have resprouted after fire have higher photosynthetic capacity than control plants in intact vegetation. In this study, branches detached from forest plants were fed with dithiothreitol (DTT) in the laboratory to inhibit zeaxanthin production and thus reduce the dissipation of light energy as heat. This allowed us to test the hypothesis that plants with greater photosynthetic capacity, and therefore greater photo-chemical sink strength, would suffer a lower reduction in photochemical efficiency under stressful conditions. Greater rates of photochemistry in resprouts, which exhibited increased photosynthesis (A), leaf conductance (g), quantum yield of PSII (ΔF/Fm′) and photochemical quenching (qP), were related to lower non-radiative dissipation of excess energy as indicated by 1 – (Fv′/Fm′). However, the fraction of energy remaining of that used in photo-chemistry or dissipated thermally in the PSII antennae was similar in resprouts and controls and was not affected by DTT, especially under high irradiance conditions. Zeaxanthin involvement in PSII protection operated in resprouts and controls since DTT induced the same kind of response (NPQ decrease) but was lower in resprouts. These chloro-phyll fluorescence results suggest the participation of some additional mechanism for energy dissipation. Light capture characteristics of the photosynthetic apparatus did not differ between resprouts and controls, and leaf age did not play a determining role in the differences observed.


2020 ◽  
Author(s):  
Jin-Yan Zhang ◽  
Zhu Cun ◽  
Jun-Wen Chen

Abstract Background: Nitrogen (N) is an essential component of photosynthetic apparatus. However, the mechanism that photosynthetic capacity is suppressed by N is not completely understood. Photosynthetic capacity and photosynthesis-related genes were comparatively analyzed in a shade-tolerant species Panax notoginseng grown under the levels of low N (LN), moderate N (MN) and high N (HN). Results: Photosynthetic assimilation was significantly suppressed in the LN- and HN-grown plants. Compared with the MN-grown plants, the HN-grown plants showed thicker anatomic structure and larger chloroplast accompanied with decreased ratio of mesophyll conductance (gm ) to Rubisco content (gm /Rubisco) and lower Rubisco activity. Meanwhile, LN-grown plants displayed smaller chloroplast and accordingly lower internal conductance (gi ). LN- and HN-grown individuals allocated less N to light-harvesting system (NL ) and carboxylation system (NC ), respectively. N surplus negatively affected the expression of genes in Car biosynthesis ( GGPS , DXR , PSY , IPI and DXS ). The LN individuals outperformed others with respect to non-photochemical quenching. The expression of genes ( FBA, PGK, RAF2, GAPC, CAB, PsbA and PsbH ) encoding enzymes of Calvin cycle and structural protein of light reaction were obviously repressed in the LN individuals, accompanying with a reduction in Rubisco content and activity. Correspondingly, the expression of genes encoding RAF2 , RPI4 , CAB and PetE were repressed in the HN-grown plants. Conclusions: LN-induced depression of photosynthetic capacity might be caused by the deceleration on Calvin cycle and light reaction of photosynthesis, and HN-induced depression of ones might derive from an increase in the form of inactivated Rubisco.


2019 ◽  
Vol 39 (10) ◽  
pp. 1750-1766 ◽  
Author(s):  
Laura Verena Junker-Frohn ◽  
Anita Kleiber ◽  
Kirstin Jansen ◽  
Arthur Gessler ◽  
Jürgen Kreuzwieser ◽  
...  

ABSTRACT Plants have evolved energy dissipation pathways to reduce photooxidative damage under drought when photosynthesis is hampered. Non-volatile and volatile isoprenoids are involved in non-photochemical quenching of excess light energy and scavenging of reactive oxygen species. A better understanding of trees’ ability to cope with and withstand drought stress will contribute to mitigate the negative effects of prolonged drought periods expected under future climate conditions. Therefore we investigated if Douglas-fir (Pseudotsuga menziesii(Mirb.)) provenances from habitats with contrasting water availability reveal intraspecific variation in isoprenoid-mediated energy dissipation pathways. In a controlled drought experiment with 1-year-old seedlings of an interior and a coastal Douglas-fir provenance, we assessed the photosynthetic capacity, pool sizes of non-volatile isoprenoids associated with the photosynthetic apparatus, as well as pool sizes and emission of volatile isoprenoids. We observed variation in the amount and composition of non-volatile and volatile isoprenoids among provenances, which could be linked to variation in photosynthetic capacity under drought. The coastal provenance exhibited an enhanced biosynthesis and emission of volatile isoprenoids, which is likely sustained by generally higher assimilation rates under drought. In contrast, the interior provenance showed an enhanced photoprotection of the photosynthetic apparatus by generally higher amounts of non-volatile isoprenoids and increased amounts of xanthophyll cycle pigments under drought. Our results demonstrate that there is intraspecific variation in isoprenoid-mediated energy dissipation pathways among Douglas-fir provenances, which may be important traits when selecting provenances suitable to grow under future climate conditions.


Botany ◽  
2008 ◽  
Vol 86 (5) ◽  
pp. 491-500 ◽  
Author(s):  
Robin Lundell ◽  
Timo Saarinen ◽  
Helena Åström ◽  
Heikki Hänninen

The ability to retain their photosynthetic capacity through the winter may be important for plants in boreal conditions, where the growing season is relatively short and winter temperatures fluctuate from severe freezing up to near 0 °C. The snow cover is an important protector for field-layer plants against both extreme freezing and excessive light, both of which could damage the photosynthetic apparatus. To understand the importance of wintertime photosynthetic activity for evergreen boreal dwarf shrubs, the photosynthesis of Vaccinium vitis-idaea L. was monitored in field conditions for one year. A dynamic model was used to determine the relative effect of temperature on the photosynthetic capacity. Our results show that V. vitis-idaea retains its photosynthetic capacity throughout the winter: its average photosynthetic capacity in winter was almost 25% of the yearly maximum measured. Changes in photosynthetic capacity over the year reflect the changes in air temperature with a certain delay, except in summer. Concentrations of soluble sugars remained high during the winter months, probably as a consequence of CO2 uptake under the snow cover. Our measurements indicated no significant damage to the leaf tissue over the winter, but suggest that photoinhibition may occur immediately after snowmelt.


2020 ◽  
Author(s):  
Jiamei Wu ◽  
Zuomin Shi ◽  
Shun Liu ◽  
Mauro Centritto ◽  
Xiangwen Cao ◽  
...  

Abstract Elevational variations in the growing environment and sex differences in individuals drive the diversification of photosynthetic capacity of plants. However, photosynthetic response of dioecious plants to elevation gradients and the mechanisms that cause these responses are poorly understood. We measured foliar gas exchange, chlorophyll fluorescence and nitrogen allocations of male and female Seabuckthorn (Hippophae rhamnoides L.) at the elevation of 1900–3700 m above sea level (a.s.l.) on the eastern Qinghai-Tibetan Plateau, China. Male and female plants showed increased leaf photosynthetic capacity at higher elevation generally with no sex-specific difference. Photosynthetic photon flux density-saturated photosynthesis (Asat) was limited mostly by diffusional components (77 ± 1%), whereas biochemical components contributed minor limitations (22 ± 1%). Mesophyll conductance (gm) played an essential role in Asat variation, accounting for 40 ± 2% of the total photosynthetic limitations and had a significant positive correlation with Asat. Leaf nitrogen allocations to Rubisco (PR) and bioenergetics (PB) in the photosynthetic apparatus were major drivers for variations in photosynthetic nitrogen-use efficiency. The increase of these resource uptake capacities enables H. rhamnoides to maintain a high level of carbon assimilation and function efficiently to cope with the harsh conditions and shorter growing season at higher elevation.


Sign in / Sign up

Export Citation Format

Share Document