Faculty Opinions recommendation of Increased islet antigen-specific regulatory and effector CD4+ T cells in healthy individuals with the type 1 diabetes-protective haplotype.

Author(s):  
Peter Van Endert
2020 ◽  
Vol 5 (44) ◽  
pp. eaax8767 ◽  
Author(s):  
Xiaomin Wen ◽  
Junbao Yang ◽  
Eddie James ◽  
I-Ting Chow ◽  
Helena Reijonen ◽  
...  

The DRB1*15:01-DQB1*06:02 (DR1501-DQ6) haplotype is linked to dominant protection from type 1 diabetes, but the cellular mechanism for this association is unclear. To address this question, we identified multiple DR1501- and DQ6-restricted glutamate decarboxylase 65 (GAD65) and islet-specific glucose-6-phosphatase catalytic subunit–related protein (IGRP)–specific T cell epitopes. Three of the DR1501/DQ6-restricted epitopes identified were previously reported to be restricted by DRB1*04:01/DRB1*03:01/DQB1*03:02. We also used specific class II tetramer reagents to assess T cell frequencies. Our results indicated that GAD65- and IGRP-specific effector and CD25+CD127−FOXP3+ regulatory CD4+ T cells were present at higher frequencies in individuals with the protective haplotype than those with susceptible or neutral haplotypes. We further confirmed higher frequencies of islet antigen–specific effector and regulatory CD4+ T cells in DR1501-DQ6 individuals through a CD154/CD137 up-regulation assay. DR1501-restricted effector T cells were capable of producing interferon-γ (IFN-γ) and interleukin-4 (IL-4) but were more likely to produce IL-10 compared with effectors from individuals with susceptible haplotypes. To evaluate their capacity for antigen-specific regulatory activity, we cloned GAD65 and IGRP epitope–specific regulatory T cells. We showed that these regulatory T cells suppressed DR1501-restricted GAD65- and IGRP-specific effectors and DQB1*03:02-restricted GAD65-specific effectors in an antigen-specific fashion. In total, these results suggest that the protective DR1501-DQ6 haplotype confers protection through increased frequencies of islet-specific IL-10–producing T effectors and CD25+CD127−FOXP3+ regulatory T cells.


2017 ◽  
Vol 199 (1) ◽  
pp. 323-335 ◽  
Author(s):  
Karen Cerosaletti ◽  
Fariba Barahmand-pour-Whitman ◽  
Junbao Yang ◽  
Hannah A. DeBerg ◽  
Matthew J. Dufort ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 100-OR
Author(s):  
DAISUKE CHUJO ◽  
AKITSU KAWABE ◽  
NOBUYUKI TAKAHASHI ◽  
MAYA MATSUSHITA ◽  
CHIHARU TSUTSUMI ◽  
...  

2020 ◽  
Vol 105 (10) ◽  
pp. 3141-3151 ◽  
Author(s):  
Daisuke Chujo ◽  
Akitsu Kawabe ◽  
Maya Matsushita ◽  
Nobuyuki Takahashi ◽  
Chiharu Tsutsumi ◽  
...  

Abstract Context Type 1 diabetes (T1D) is classified into 3 subtypes: acute-onset (AT1D), slowly progressive (SP1D), and fulminant (FT1D). The differences in the type of cellular autoimmunity within each subtype remain largely undetermined. Objective To determine the type and frequency of islet antigen-specific CD4+ T cells in each subtype of T1D. Participants Twenty patients with AT1D, 17 with SP1D, 18 with FT1D, and 17 persons without diabetes (ND). Methods We performed an integrated assay to determine cellular immune responses and T-cell repertoires specific for islet antigens. This assay included an ex vivo assay involving a 48-hour stimulation of peripheral blood mononuclear cells with antigen peptides and an expansion assay involving intracytoplasmic cytokine analysis. Results The results of the ex vivo assay indicated that glutamic acid decarboxylase 65 (GAD65)-specific interleukin-6 and interferon-inducible protein-10 (IP-10) responses and preproinsulin (PPI)-specific IP-10 responses were significantly upregulated in AT1D compared with those of ND. Furthermore, GAD65- and PPI-specific granulocyte colony-stimulating factor responses were significantly upregulated in FT1D. Expansion assay revealed that GAD65- and PPI-specific CD4+ T cells were skewed toward a type 1 helper T (Th1)- cell phenotype in AT1D, whereas GAD65-specific Th2 cells were prevalent in SP1D. GAD65-specific Th1 cells were more abundant in SP1D with human leukocyte antigen-DR9 than in SP1D without DR9. FT1D displayed significantly less type 1 regulatory T (Tr1) cells specific for all 4 antigens than ND. Conclusions The phenotypes of islet antigen-specific CD4+ T cells differed among the three T1D subtypes. These distinct T-cell phenotypes may be associated with the manner of progressive β-cell destruction.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laurie G. Landry ◽  
Amanda M. Anderson ◽  
Holger A. Russ ◽  
Liping Yu ◽  
Sally C. Kent ◽  
...  

Proinsulin is an abundant protein that is selectively expressed by pancreatic beta cells and has been a focus for development of antigen-specific immunotherapies for type 1 diabetes (T1D). In this study, we sought to comprehensively evaluate reactivity to preproinsulin by CD4 T cells originally isolated from pancreatic islets of organ donors having T1D. We analyzed 187 T cell receptor (TCR) clonotypes expressed by CD4 T cells obtained from six T1D donors and determined their response to 99 truncated preproinsulin peptide pools, in the presence of autologous B cells. We identified 14 TCR clonotypes from four out of the six donors that responded to preproinsulin peptides. Epitopes were found across all of proinsulin (insulin B-chain, C-peptide, and A-chain) including four hot spot regions containing peptides commonly targeted by TCR clonotypes derived from multiple T1D donors. Of importance, these hot spots overlap with peptide regions to which CD4 T cell responses have previously been detected in the peripheral blood of T1D patients. The 14 TCR clonotypes recognized proinsulin peptides presented by various HLA class II molecules, but there was a trend for dominant restriction with HLA-DQ, especially T1D risk alleles DQ8, DQ2, and DQ8-trans. The characteristics of the tri-molecular complex including proinsulin peptide, HLA-DQ molecule, and TCR derived from CD4 T cells in islets, provides an essential basis for developing antigen-specific biomarkers as well as immunotherapies.


2006 ◽  
Vol 119 ◽  
pp. S166
Author(s):  
Tihamer Orban ◽  
Janos Kis ◽  
Peter Engelmann ◽  
Laszlo Szereday ◽  
Geoffrey Richman ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (4) ◽  
pp. 661-669 ◽  
Author(s):  
Jan Knoop ◽  
Anne Eugster ◽  
Anita Gavrisan ◽  
Ramona Lickert ◽  
Eva-Maria Sedlmeier ◽  
...  
Keyword(s):  
T Cells ◽  

Diabetologia ◽  
2020 ◽  
Vol 63 (6) ◽  
pp. 1174-1185
Author(s):  
Stephanie J. Hanna ◽  
Wendy E. Powell ◽  
Anna E. Long ◽  
Emma J. S. Robinson ◽  
Joanne Davies ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document