scholarly journals Faculty Opinions recommendation of A novel high-throughput screen for identifying lipids that stabilise membrane proteins in detergent based solution.

Author(s):  
Rosa López-Marqués
2020 ◽  
Vol 40 (8) ◽  
pp. 1854-1869
Author(s):  
Keith A. Strand ◽  
Sizhao Lu ◽  
Marie F. Mutryn ◽  
Linfeng Li ◽  
Qiong Zhou ◽  
...  

Objective: Our recent work demonstrates that PTEN (phosphatase and tensin homolog) is an important regulator of smooth muscle cell (SMC) phenotype. SMC-specific PTEN deletion promotes spontaneous vascular remodeling and PTEN loss correlates with increased atherosclerotic lesion severity in human coronary arteries. In mice, PTEN overexpression reduces plaque area and preserves SMC contractile protein expression in atherosclerosis and blunts Ang II (angiotensin II)-induced pathological vascular remodeling, suggesting that pharmacological PTEN upregulation could be a novel therapeutic approach to treat vascular disease. Approach and Results: To identify novel PTEN activators, we conducted a high-throughput screen using a fluorescence based PTEN promoter-reporter assay. After screening ≈3400 compounds, 11 hit compounds were chosen based on level of activity and mechanism of action. Following in vitro confirmation, we focused on 5-azacytidine, a DNMT1 (DNA methyltransferase-1) inhibitor, for further analysis. In addition to PTEN upregulation, 5-azacytidine treatment increased expression of genes associated with a differentiated SMC phenotype. 5-Azacytidine treatment also maintained contractile gene expression and reduced inflammatory cytokine expression after PDGF (platelet-derived growth factor) stimulation, suggesting 5-azacytidine blocks PDGF-induced SMC de-differentiation. However, these protective effects were lost in PTEN-deficient SMCs. These findings were confirmed in vivo using carotid ligation in SMC-specific PTEN knockout mice treated with 5-azacytidine. In wild type controls, 5-azacytidine reduced neointimal formation and inflammation while maintaining contractile protein expression. In contrast, 5-azacytidine was ineffective in PTEN knockout mice, indicating that the protective effects of 5-azacytidine are mediated through SMC PTEN upregulation. Conclusions: Our data indicates 5-azacytidine upregulates PTEN expression in SMCs, promoting maintenance of SMC differentiation and reducing pathological vascular remodeling in a PTEN-dependent manner.


2011 ◽  
Vol 16 (8) ◽  
pp. 869-877 ◽  
Author(s):  
Duncan I. Mackie ◽  
David L. Roman

In this study, the authors used AlphaScreen technology to develop a high-throughput screening method for interrogating small-molecule libraries for inhibitors of the Gαo–RGS17 interaction. RGS17 is implicated in the growth, proliferation, metastasis, and the migration of prostate and lung cancers. RGS17 is upregulated in lung and prostate tumors up to a 13-fold increase over patient-matched normal tissues. Studies show RGS17 knockdown inhibits colony formation and decreases tumorigenesis in nude mice. The screen in this study uses a measurement of the Gαo–RGS17 protein–protein interaction, with an excellent Z score exceeding 0.73, a signal-to-noise ratio >70, and a screening time of 1100 compounds per hour. The authors screened the NCI Diversity Set II and determined 35 initial hits, of which 16 were confirmed after screening against controls. The 16 compounds exhibited IC50 <10 µM in dose–response experiments. Four exhibited IC50 values <6 µM while inhibiting the Gαo–RGS17 interaction >50% when compared to a biotinylated glutathione-S-transferase control. This report describes the first high-throughput screen for RGS17 inhibitors, as well as a novel paradigm adaptable to many other RGS proteins, which are emerging as attractive drug targets for modulating G-protein-coupled receptor signaling.


Virology ◽  
2021 ◽  
Author(s):  
Gustavo Martínez-Noël ◽  
Valdimara Corrêa Vieira ◽  
Patricia Szajner ◽  
Erin M. Lilienthal ◽  
Rebecca E. Kramer ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e88207 ◽  
Author(s):  
Lingyan Zhu ◽  
Qing Xu ◽  
Ling Jiang ◽  
He Huang ◽  
Shuang Li

Sign in / Sign up

Export Citation Format

Share Document