Faculty Opinions recommendation of aPC/PAR1 confers endothelial anti-apoptotic activity via a discrete, β-arrestin-2-mediated SphK1-S1PR1-Akt signaling axis.

Author(s):  
Arun Shukla
2021 ◽  
Vol 118 (49) ◽  
pp. e2106623118
Author(s):  
Olivia Molinar-Inglis ◽  
Cierra A. Birch ◽  
Dequina Nicholas ◽  
Lennis Orduña-Castillo ◽  
Metztli Cisneros-Aguirre ◽  
...  

Endothelial dysfunction is associated with vascular disease and results in disruption of endothelial barrier function and increased sensitivity to apoptosis. Currently, there are limited treatments for improving endothelial dysfunction. Activated protein C (aPC), a promising therapeutic, signals via protease-activated receptor-1 (PAR1) and mediates several cytoprotective responses, including endothelial barrier stabilization and anti-apoptotic responses. We showed that aPC-activated PAR1 signals preferentially via β-arrestin-2 (β-arr2) and dishevelled-2 (Dvl2) scaffolds rather than G proteins to promote Rac1 activation and barrier protection. However, the signaling pathways utilized by aPC/PAR1 to mediate anti-apoptotic activities are not known. aPC/PAR1 cytoprotective responses also require coreceptors; however, it is not clear how coreceptors impact different aPC/PAR1 signaling pathways to drive distinct cytoprotective responses. Here, we define a β-arr2–mediated sphingosine kinase-1 (SphK1)-sphingosine-1-phosphate receptor-1 (S1PR1)-Akt signaling axis that confers aPC/PAR1-mediated protection against cell death. Using human cultured endothelial cells, we found that endogenous PAR1 and S1PR1 coexist in caveolin-1 (Cav1)–rich microdomains and that S1PR1 coassociation with Cav1 is increased by aPC activation of PAR1. Our study further shows that aPC stimulates β-arr2–dependent SphK1 activation independent of Dvl2 and is required for transactivation of S1PR1-Akt signaling and protection against cell death. While aPC/PAR1-induced, extracellular signal–regulated kinase 1/2 (ERK1/2) activation is also dependent on β-arr2, neither SphK1 nor S1PR1 are integrated into the ERK1/2 pathway. Finally, aPC activation of PAR1-β-arr2–mediated protection against apoptosis is dependent on Cav1, the principal structural protein of endothelial caveolae. These studies reveal that different aPC/PAR1 cytoprotective responses are mediated by discrete, β-arr2–driven signaling pathways in caveolae.


2021 ◽  
Author(s):  
Olivia Molinar-Inglis ◽  
Cierra A. Birch ◽  
Dequina Nicholas ◽  
Metzli Cisneros-Aguirre ◽  
Anand Patwardhan ◽  
...  

Endothelial dysfunction is associated with multiple vascular diseases and lacks effective treatments. Activated Protein C (aPC) is a promising biotherapeutic that signals via protease-activated receptor-1 (PAR1) to promote diverse cytoprotective responses, including endothelial barrier stabilization, anti-inflammatory and anti-apoptotic activities, which is facilitated by co-receptors. We showed that aPC-activated PAR1 signals preferentially via b-arrestin-2 (b-arr2) and dishevelled-2 (Dvl2) scaffolds rather than G proteins to enhance barrier protection. However, the mechanisms by which aPC/PAR1 promotes other cytoprotective responses are poorly understood. Here we define a novel β-arr2-mediated sphingosine kinase-1 (SphK1)-sphingosine-1-phosphate receptor-1 (S1PR1)-Akt signaling axis that confers aPC/PAR1-mediated protection against cell death. We show that PAR1 and S1PR1 co-exist in caveolin-1-rich microdomains basally and aPC markedly increases S1PR1-caveolin-1 co-association. Moreover, aPC stimulates b-arr2-dependent SphK1 activation independent of Dvl2, which is critical for S1PR1 transactivation. These studies reveal that different aPC/PAR1 cytoprotective responses are mediated by discrete b-arr2-driven signaling pathways in caveolae.


2019 ◽  
Vol 24 (39) ◽  
pp. 4605-4610 ◽  
Author(s):  
Atena Soleimani ◽  
Farzad Rahmani ◽  
Gordon A. Ferns ◽  
Mikhail Ryzhikov ◽  
Amir Avan ◽  
...  

Colorectal cancer (CRC) is the leading cause of cancer death worldwide and its incidence is increasing. In most patients with CRC, the PI3K/AKT signaling axis is over-activated. Regulatory oncogenic or tumor suppressor microRNAs (miRNAs) for PI3K/AKT signaling regulate cell proliferation, migration, invasion, angiogenesis, as well as resistance to chemo-/radio-therapy in colorectal cancer tumor tissues. Thus, regulatory miRNAs of PI3K/AKT/mTOR signaling represent novel biomarkers for new patient diagnosis and obtaining clinically invaluable information from post-treatment CRC patients for improving therapeutic strategies. This review summarizes the current knowledge of miRNAs’ regulatory roles of PI3K/AKT signaling in CRC pathogenesis.


2014 ◽  
Vol 34 (5) ◽  
pp. 455-464 ◽  
Author(s):  
Qiang Xie ◽  
Yongrong Yan ◽  
Zuoping Huang ◽  
Xueyun Zhong ◽  
Lei Huang

2011 ◽  
Vol 13 (6) ◽  
pp. 610-621 ◽  
Author(s):  
D. B. Gursel ◽  
Y. S. Connell-Albert ◽  
R. G. Tuskan ◽  
T. Anastassiadis ◽  
J. C. Walrath ◽  
...  

2016 ◽  
Vol 19 (6) ◽  
pp. 738-751 ◽  
Author(s):  
Guillermo C. Rivera-Gonzalez ◽  
Brett A. Shook ◽  
Johanna Andrae ◽  
Brandon Holtrup ◽  
Katherine Bollag ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document