Sensitivity and specificity of arthroscopic estimation of positive and negative radio-ulnar incongruence in dogs

2009 ◽  
Vol 22 (06) ◽  
pp. 437-441. ◽  
Author(s):  
H. Werner ◽  
V. Grevel ◽  
G. Oechtering ◽  
P. Böttcher ◽  
P. Winkels

Summary Objectives: To determine the sensitivity and specificity of arthroscopic estimation of positive and negative radio-ulnar incongruence (RUI) in the canine elbow joint. Methods: Experimental radial shortening and lengthening by 1 and 2 mm increments were performed in nine right elbow joints, extending an established surgical in vitro model of RUI. Arthroscopic estimation of each artificially produced radio-ulnar joint conformation (RUJC) was done using a graduated hook probe. A total of 72 RUJC were blindly evaluated in a random manner by an independent investigator and estimated in 1 mm increments (-2, -1, 0, +1, +2). Results: The sensitivity for identification of an incongruent joint was 0.98 (95% CI: 0.90 to 0.99). The specificity for identification of a congruent joint was 0.89 (95% CI: 0.65 to 0.98). Analysing the data only in respect to a congruent joint versus one with a shortened radius (positive RUI) resulted in a sensitivity of 0.96 (95% CI: 0.80 to 0.99) and a specificity of 1.00 (95% CI: 0.92 to 1.00). Clinical significance: Accurate estimation of RUI in dogs affected by elbow dysplasia might improve functional outcome and prevent osteoarthritis when corrective or modifying osteotomies are being considered as part of the treatment plan. Arthroscopy has been shown to be highly accurate and precise in detecting both positive and negative RUI in vitro. However, its diagnostic strength under clinical conditions still has to be proven.

2005 ◽  
Vol 46 (3) ◽  
pp. 210-216 ◽  
Author(s):  
Laurent Blond ◽  
Jacques Dupuis ◽  
Guy Beauregard ◽  
Luc Breton ◽  
Maxim Moreau

Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


2011 ◽  
Vol 71 (05) ◽  
Author(s):  
M Salama ◽  
K Winkler ◽  
KF Murach ◽  
S Hofer ◽  
L Wildt ◽  
...  

2020 ◽  
Author(s):  
H Gaitantzi ◽  
C Cai ◽  
S Asawa ◽  
K Böttcher ◽  
M Ebert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document