scholarly journals Structure based virtual docking and molecular dynamics guided identification of potential phytoconstituents from traditionally used female antifertility plant

2021 ◽  
Author(s):  
Keerthi Priya ◽  
Suman Manandhar ◽  
Runali Sankhe ◽  
M Manjunath Setty ◽  
UV Babu ◽  
...  

Background: Oral contraceptives are very widely used agents to check unwanted pregnancies. They contain synthetic analogues of estrogen and progesterone hormones. Estrogen is an important hormone that plays a significant role in menstrual cycle, ovulation, fertilization and implantation. Estrogen receptor α (ERα) can modulate the ovulation, fertilization or receptivity of the uterus. Oral contraceptives pose mild to severe adverse effects such as menstrual cycle disorders, metabolic alterations and increased risk of cancers. It is essential to identify and screen alternative contraceptives that are safer to use. The present study was aimed at identifying the compounds from Cissampelos pareira that is traditionally used for antifertility activity. Methods: The compounds reported from the plant are collected and prepared using the protein preparation wizard. The protein, ERα was selected from protein data bank (1G5O) and prepared. The ligands were docked with the protein and the hits were selected for further screening of free energy calculation, induced fit docking and molecular dynamics simulations based on the respective scores and various interactions. Results: Among various compounds, Coclaurine and Norruffscine have been identified to interact with ERα and possess similar interactions as that of the endogenous ligand, estradiol. The compounds also showed drug-like properties in Qikprop analysis and promising result in the molecular dynamics simulation studies. Conclusion: Considering the dock scores, molecular interactions with the ERα receptor and energy calculations, the compounds Coclaurine and Norruffscine were found to have good binding properties. Further in vitro and in vivo evaluation are warranted for confirmation.

2021 ◽  
Vol 14 (6) ◽  
pp. 541
Author(s):  
Hani A. Alhadrami ◽  
Ahmed M. Sayed ◽  
Heba Al-Khatabi ◽  
Nabil A. Alhakamy ◽  
Mostafa E. Rateb

The COVID-19 pandemic is still active around the globe despite the newly introduced vaccines. Hence, finding effective medications or repurposing available ones could offer great help during this serious situation. During our anti-COVID-19 investigation of microbial natural products (MNPs), we came across α-rubromycin, an antibiotic derived from Streptomyces collinus ATCC19743, which was able to suppress the catalytic activity (IC50 = 5.4 µM and Ki = 3.22 µM) of one of the viral key enzymes (i.e., MPro). However, it showed high cytotoxicity toward normal human fibroblasts (CC50 = 16.7 µM). To reduce the cytotoxicity of this microbial metabolite, we utilized a number of in silico tools (ensemble docking, molecular dynamics simulation, binding free energy calculation) to propose a novel scaffold having the main pharmacophoric features to inhibit MPro with better drug-like properties and reduced/minimal toxicity. Nevertheless, reaching this novel scaffold synthetically is a time-consuming process, particularly at this critical time. Instead, this scaffold was used as a template to explore similar molecules among the FDA-approved medications that share its main pharmacophoric features with the aid of pharmacophore-based virtual screening software. As a result, cromoglicic acid (aka cromolyn) was found to be the best hit, which, upon in vitro MPro testing, was 4.5 times more potent (IC50 = 1.1 µM and Ki = 0.68 µM) than α-rubromycin, with minimal cytotoxicity toward normal human fibroblasts (CC50 > 100 µM). This report highlights the potential of MNPs in providing unprecedented scaffolds with a wide range of therapeutic efficacy. It also revealed the importance of cheminformatics tools in speeding up the drug discovery process, which is extremely important in such a critical situation.


2020 ◽  
Vol 63 (1) ◽  
Author(s):  
Ghazala Muteeb ◽  
Adil Alshoaibi ◽  
Mohammad Aatif ◽  
Md. Tabish Rehman ◽  
M. Zuhaib Qayyum

AbstractThe recent dissemination of SARS-CoV-2 from Wuhan city to all over the world has created a pandemic. COVID-19 has cost many human lives and created an enormous economic burden. Although many drugs/vaccines are in different stages of clinical trials, still none is clinically available. We have screened a marine seaweed database (1110 compounds) against 3CLpro of SARS-CoV-2 using computational approaches. High throughput virtual screening was performed on compounds, and 86 of them with docking score <  − 5.000 kcal mol−1 were subjected to standard-precision docking. Based on binding energies (< − 6.000 kcal mol−1), 9 compounds were further shortlisted and subjected to extra-precision docking. Free energy calculation by Prime-MM/GBSA suggested RC002, GA004, and GA006 as the most potent inhibitors of 3CLpro. An analysis of ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties of RC002, GA004, and GA006 indicated that only RC002 (callophysin A, from red alga Callophycus oppositifolius) passed Lipinski’s, Veber’s, PAINS and Brenk’s filters and displayed drug-like and lead-like properties. Analysis of 3CLpro-callophysin A complex revealed the involvement of salt bridge, hydrogen bonds, and hydrophobic interactions. callophysin A interacted with the catalytic residues (His41 and Cys145) of 3CLpro; hence it may act as a mechanism-based competitive inhibitor. Docking energy and docking affinity of callophysin A towards 3CLpro was − 8.776 kcal mol−1 and 2.73 × 106 M−1, respectively. Molecular dynamics simulation confirmed the stability of the 3CLpro-callophysin A complex. The findings of this study may serve as the basis for further validation by in vitro and in vivo studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Trina Ekawati Tallei ◽  
Fatimawali ◽  
Afriza Yelnetty ◽  
Rinaldi Idroes ◽  
Diah Kusumawaty ◽  
...  

The rapid spread of a novel coronavirus known as SARS-CoV-2 has compelled the entire world to seek ways to weaken this virus, prevent its spread and also eliminate it. However, no drug has been approved to treat COVID-19. Furthermore, the receptor-binding domain (RBD) on this viral spike protein, as well as several other important parts of this virus, have recently undergone mutations, resulting in new virus variants. While no treatment is currently available, a naturally derived molecule with known antiviral properties could be used as a potential treatment. Bromelain is an enzyme found in the fruit and stem of pineapples. This substance has been shown to have a broad antiviral activity. In this article, we analyse the ability of bromelain to counteract various variants of the SARS-CoV-2 by targeting bromelain binding on the side of this viral interaction with human angiotensin-converting enzyme 2 (hACE2) using molecular docking and molecular dynamics simulation approaches. We have succeeded in making three-dimensional configurations of various RBD variants using protein modelling. Bromelain exhibited good binding affinity toward various variants of RBDs and binds right at the binding site between RBDs and hACE2. This result is also presented in the modelling between Bromelain, RBD, and hACE2. The molecular dynamics (MD) simulations study revealed significant stability of the bromelain and RBD proteins separately up to 100 ns with an RMSD value of 2 Å. Furthermore, despite increases in RMSD and changes in Rog values of complexes, which are likely due to some destabilized interactions between bromelain and RBD proteins, two proteins in each complex remained bonded, and the site where the two proteins bind remained unchanged. This finding indicated that bromelain could have an inhibitory effect on different SARS-CoV-2 variants, paving the way for a new SARS-CoV-2 inhibitor drug. However, more in vitro and in vivo research on this potential mechanism of action is required.


Author(s):  
Ashis Kumar Goswami ◽  
Hemanta Kumar Sharma ◽  
Neelutpal Gogoi ◽  
Ankita Kashyap ◽  
Bhaskar Jyoti Gogoi

Background: Malaria is caused by different species of Plasmodium; among which P. falciparum is the most severe. Coptis teeta is an ethnomedicinal plant of enormous importance for tribes of north east India. Objective: In this study, the anti malarial activity of the methanol extracts of Coptis teeta was evaluated in vitro and lead identification via in silico study. Method: On the basis of the in vitro results, in silico analysis by application of different modules of Discovery Studio 2018 was performed on multiple targets of P. falciparum taking into consideration some of the compounds reported from C. teeta. Results: The IC50 of the methanol extract of Coptis teeta 0.08 µg/ml in 3D7 strain and 0.7 µg/ml in Dd2 strain of P. falciparum. From the docking study, noroxyhydrastatine was observed to have better binding affinity in comparison to chloroquine. The binding of noroxyhydrastinine with dihydroorotate dehydrogenase was further validated by molecular dynamics simulation and was observed to be significantly stable in comparison to the co-crystal inhibitor. During simulations it was observed that noroxyhydrastinine retained the interactions, giving strong indications of its effectiveness against the P. falciparum proteins and stability in the binding pocket. From the Density-functional theory analysis, the band gap energy of noroxyhydrastinine was found to be 0.186 Ha indicating a favourable interaction. Conclusion: The in silico analysis as an addition to the in vitro results provide strong evidence of noroxyhydrastinine as an anti malarial agent.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4657
Author(s):  
Phuong Thuy Viet Nguyen ◽  
Han Ai Huynh ◽  
Dat Van Truong ◽  
Thanh-Dao Tran ◽  
Cam-Van Thi Vo

Inhibition of human pancreatic lipase, a crucial enzyme in dietary fat digestion and absorption, is a potent therapeutic approach for obesity treatment. In this study, human pancreatic lipase inhibitory activity of aurone derivatives was explored by molecular modeling approaches. The target protein was human pancreatic lipase (PDB ID: 1LPB). The 3D structures of 82 published bioactive aurone derivatives were docked successfully into the protein catalytic active site, using AutoDock Vina 1.5.7.rc1. Of them, 62 compounds interacted with the key residues of catalytic trial Ser152-Asp176-His263. The top hit compound (A14), with a docking score of −10.6 kcal⋅mol−1, was subsequently submitted to molecular dynamics simulations, using GROMACS 2018.01. Molecular dynamics simulation results showed that A14 formed a stable complex with 1LPB protein via hydrogen bonds with important residues in regulating enzyme activity (Ser152 and Phe77). Compound A14 showed high potency for further studies, such as the synthesis, in vitro and in vivo tests for pancreatic lipase inhibitory activity.


Sign in / Sign up

Export Citation Format

Share Document