Overhead Line Fault Detection and Control using Internet of Things (IoT)

2020 ◽  
Vol 2 (1) ◽  
pp. 17-21
Author(s):  
Monica M ◽  
Sivakumar P ◽  
Sivani S ◽  
Sandhiya D ◽  
Shameem Fathima J ◽  
...  

In the modern era transmission line is the most important part of the power system. Its allegiance and requirement of power is grown up exponentially. The major role of transmission lines is to transmit electric power from the source area to distribution network. Transmission line protection is an important issue in power system because 85-87% of power system faults are occurring in transmission line. Energy leakage is one of the major problems that corporates faces in recent times. Only way to solve this problem is to come up with a mechanism that can detect the fault in transmission line automatically and intimate the authorities with a specific location. In this work the device uses the sensor to sense the voltage flow in the transmission line and detect if there is a variation in the voltage flow. If fault is detected, it can be automatically controlled by using relay and the system is also integrated with IoT mechanism, to intimate the responsible person with location information.

Author(s):  
Hui Hwang Goh ◽  
Sy yi Sim ◽  
Asad Shaykh ◽  
Md. Humayun Kabir ◽  
Chin Wan Ling ◽  
...  

<p>Transmission line is the most important part of the power system.  Transmission lines a principal amount of power. The requirement of power and its allegiance has grown up exponentially over the modern era, and the major role of a transmission line is to transmit electric power from the source area to the distribution network. The exploded between limited production, and a tremendous claim has grown the focus on minimizing power losses. Losses like transmission loss and also conjecture factors as like as physical losses to various technical losses, Another thing is the primary factor it has a reactive power and voltage deviation are momentous in the long-range transmission power line. In essentially, fault analysis is a very focusing issue in power system engineering to clear fault in short time and re-establish power system as quickly as possible on very minimum interruption. However,  the fault detection that interrupts the transmission line is itself challenging task to investigate fault as well as improving the reliability of the system. The transmission line is susceptible given all parameters that connect the whole power system. This paper presents a review of transmission line fault detection.</p>


2012 ◽  
Vol 433-440 ◽  
pp. 5542-5548
Author(s):  
Bin Li ◽  
Tao Luo ◽  
Zhi Qian Bo

T-Type transmission lines are widely used in HV power system. The paper analyzes operation characteristics of fault component based traditional differential protection principles in the complex plane. The paper pointed out that there are some limitations for traditional principles in ensuring sensitivity of internal fault and reliability of external fault. Furthermore, the paper proposes a novel principle for T-type transmission line. Current phase differential phase is introduced into realization of current differential protection. Restraint unit of the proposed principle takes the role of drive and restraint respectively in the case of internal and external faults. Therefore, both the sensitivity and reliability of protection are improved significantly. At last, simulation tests show that the proposed principle is valid.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 67 ◽  
Author(s):  
Jian Hu ◽  
Xiaofu Xiong ◽  
Jing Chen ◽  
Wei Wang ◽  
Jian Wang

The overload degree of a transmission line is represented by currents in traditional overload protection, which cannot reflect its safety condition accurately. The sudden rise in transmission line current may lead to cascading tripping under traditional protection during power flow transfer in a power system. Therefore, timely and accurate analysis of the transient temperature rise of overhead transmission lines, revealing their overload endurance capability under the premise of ensuring safety, and coordination with power system controls can effectively eliminate overloading. This paper presents a transient temperature calculation method for overhead transmission lines based on an equivalent thermal network. This method can fully consider the temperature-dependent characteristics with material properties, convective heat resistance, and radiation heat and can accurately calculate the gradient distribution and response of the conductor cross-section temperature. The validity and accuracy of the proposed calculation method are verified by a test platform. In addition, a multi-parameter thermal protection strategy is proposed on the basis of the abovementioned calculation method. The protection can adequately explore the maximum overload capability of the line, and prevent from unnecessary tripping to avoid the expansion of accidents. Finally, the validity of the proposed protection is verified by the modified 29-bus system.


2014 ◽  
Vol 672-674 ◽  
pp. 799-802
Author(s):  
Xiao Gang Li ◽  
Li Xue Li ◽  
Yi Hui Zheng ◽  
Xin Wang ◽  
Jian You Yu ◽  
...  

Lightning overvoltage often leads to transmission lines trip, which is the weak link of power system. In this paper, 110-kV transmission line model is studied on the basis of the EMTP software. Several simulation models are established for back flashover lightning, induced lightning, shield failure. The transient process of lightning stroke is studied. According to the contrast of simulation results of three kinds of lightning, a set of discriminant basis to distinguish lightning on transmission line is put forward.


2014 ◽  
Vol 15 (6) ◽  
pp. 513-526
Author(s):  
Wanjing Xiu ◽  
Yuan Liao

Abstract Transmission lines are essential components of electric power grids. Diverse power system applications and simulation based studies require transmission line parameters including series resistance, reactance, and shunt susceptance, and accurate parameters are pivotal in ensuring the accuracy of analyses and reliable system operation. Commercial software packages for performing power system studies usually have their own databases that store the power system model including line parameters. When there is a physical system model change, the corresponding component in the database of the software packages will need to be modified. Manually updating line parameters are tedious and error-prone. This paper proposes a solution for streamlining the calculation of line parameters and updating of their values in respective software databases. The algorithms used for calculating the values of line parameters are described. The software developed for implementing the solution is described, and typical results are presented. The proposed solution is developed for a utility and has a potential to be put into use by other utilities.


2021 ◽  
Vol 71 (1&2) ◽  
pp. 17
Author(s):  
Shiyang Zhu ◽  
Le Wang

Overhead transmission lines are important parts of a power system; their operation state directly affects the reliability level of the entire power system. With the in-depth development of state maintenance work for power grids, correctly evaluating the reliability of overhead transmission lines is the key to successful maintenance. A maintenance decision model for transmission lines is established in this study based on set pair analysis to achieve human financial control and low maintenance efficiency. Full consideration is provided to the influence of environmental factors, and a theoretical basis for transmission line maintenance decision is established.


Author(s):  
Ajith M ◽  
Dr. R. Rajeswari

Power-flow studies are of great significance in planning and designing the future expansion of power systems as well as in determining the best operation of existing systems. Technologies such as renewables and power electronics are aiding in power conversion and control, thus making the power system massive, complex, and dynamic. HVDC is being preferred due to limitations in HVAC such as reactive power loss, stability, current carrying capacity, operation and control. The HVDC system is being used for bulk power transmission over long distances with minimum losses using overhead transmission lines or submarine cable crossings. Recent years have witnessed an unprecedented growth in the number of the HVDC projects. Due to the vast size and inaccessibility of transmission systems, real time testing can prove to be difficult. Thus analyzing power system stability through computer modeling and simulation proves to be a viable solution in this case. The motivation of this project is to construct and analyze the load flow and short circuit behavior in an IEEE 14 bus power system with DC link using MATLAB software. This involves determining the parameters for converter transformer, rectifier, inverter and DC cable for modelling the DC link. The line chosen for incorporation of DC link is a weak bus. This project gives the results of load flow and along with comparison of reactive power flow, system losses, voltage in an AC and an AC-DC system.


2014 ◽  
Vol 521 ◽  
pp. 330-333
Author(s):  
Yu Sheng Quan ◽  
En Ze Zhou ◽  
Hua Gui Chen ◽  
Xin Zhao

High voltage overhead transmission line is an important part of the power system to ensure the safe operation of the entire power system, which is of great significance. Power line fault not only has adverse effects to the social economy, and it may also affect the stability of the power system. Transmission line faults including permanent fault and transient fault are identified quickly and accurately, which has important practical engineering significance. This paper presents a method which can be used to identify the permanent fault and transient fault of double-circuit transmission line on the same tower, fault transient voltages and currents extracted from both ends of transmission lines are as a signal source which is decomposed into a series of harmonics in order to establish a criterion function, and then the transient and permanent fault can be identified based on the changes of criterion function value.


2020 ◽  
Vol 14 (1) ◽  
pp. 21-26
Author(s):  
S. SKRYPNYK ◽  
◽  
A. SHEINA ◽  

Most failures in electrical installations are caused by short circuits (short circuits), which occur as a result of a failure in the electrical strength of the insulation of the conductive parts. A short circuit is an electrical connection of two points of an electric circuit with different values of potential, which is not provided by the design of the device, which interferes with its normal operation. Short circuits may result from a failure of the insulation of the current-carrying elements or the mechanical contact of the non- insulated elements. Also called a short circuit is a condition where the load resistance is less than the internal resistance of the power source. The reasons for such violations are various: aging of insulation, breakages of wires of overhead transmission lines, mechanical damages of isolation of cable lines at ground works, lightning strikes in the transmission line and others. Most often, short-circuits occur through transient resistance, such as through the resistance of an electric arc that occurs at the point of damage to the insulation. Sometimes there are metallic short circuits in which the resistance of the electric arc is very small. The study of short circuits in the power grid is a major step in the design of modern electrical networks. The research is conducted using computer software, first by modeling the system and then simulating errors. A malfunction usually leads to an increase in the current flowing in the lines, and failure to provide reliable protection can result in damage to the power unit. Thus, short-circuit calculations are the primary consideration when designing, upgrading, or expanding a power system. The three-phase short circuit is the least likely. However, in many cases, the three-phase short circuit is associated with the most severe consequences, as it causes the highest power imbalances on the shafts of the generators. The study of transients begins with the mode of three-phase closure due to its relative simplicity in comparison with other types of asymmetry. In most cases, the analysis and calculation of the transient regime of the electrical system involves the preparation of a calculated scheme of substitution, in which the parameters of its elements are determined in named or relative units. The electrical substitution circuitry is used to further study the transients in the power system. The definition of electrical and electromagnetic quantities in relative units is widely used in the theory of electric machines. This is because it significantly simplifies the theoretical calculations and gives the results a generalized view in the practical calculations of currents and residual voltages at the short circuit. By the relative value of any value is understood as its relation to another value of the same name, taken as the base. So, before presenting any quantities in relative units, we need to choose the basic units. In the electrical system with increased voltages, the overall load capacity of the network increases, which in turn makes it possible to supply high-quality electrical energy over a greater distance. In the process of comparing the type of transmission lines, it should be noted that the advantages of the cable transmission line. According to the results of the calculation of short-circuit currents, it can be concluded that in networks with a larger line cross-section and a higher voltage, the short-circuit currents are larger. Thus, during the transition of the electric networks to the higher voltage class of 20 kV, the currents of the KZ increased by 43% compared to the 6 kV electric network. This analysis shows that the importance of reliable power supply in the power supply system for high voltage classes must be high and have equipment to prevent emergencies. In the future, it is planned to develop a systematic calculation of short-circuit currents for a number of transmission lines and to conduct mathematical modeling in the system of applications for the study of transient processes at short circuits.


Sign in / Sign up

Export Citation Format

Share Document