scholarly journals The Reliability Analysis of PV Panels Installed in KP Region

2020 ◽  
Vol 7 (10) ◽  
pp. 384-389
Author(s):  
Jawad Ahmad ◽  

Reliability and long term performance of photovoltaic (PV) system is of vital importance in switching from conventional sources to sustainable one. Design, study and analysis of key components in a photovoltaic power system starting from generation of power to withstands number of climatic stresses and uninterrupted power supply plays a key role. One of the key elements in photovoltaic system is photovoltaic module. Also power generated in photovoltaic system is dependent on a source of energy that changes in every instant and with the passage of time during its operation .Hence it is paramount to build a long lasting photovoltaic module and analyze characteristics of the PV module under various conditions. This paper presents an efficient PV module based on PV equivalent circuit model using MATLAB/Simulink, and compared the simulated model results with manufacturer’s specifications like peak current, peak voltage, open circuit voltage and short circuit current .Also the performance of the module under variation of series resistance, irradiation, and temperature are analyzed. Data from five different areas across KP are noted and the results were Simulated and compared with the rated data.

2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Hedi Trabelsi ◽  
Younes Boujelbene

This paper explains the need for renewable energies for “green revival” of the economy. First, we will analyze the overall context of the double crisis. Then we will focus on “green recovery” as a solution for these two crises. Finally, we will study the example of the photovoltaic system as a source of renewable energy by presenting and comparing four types of MPPT commands such as: Perturb and Observe, Incremental Conductance, Fractional Open-Circuit Voltage (FOV) and Fractional Short-Circuit Current (FCC). The Matlab-Simulink environment will be used to analyze and interpret the simulation results of these algorithms and therefore we show the performance and limits of each algorithm.


Author(s):  
Narimane Khelfaoui ◽  
Ahmed Djafour ◽  
Khadidja Bouali ◽  
Mohamed Bilal Danoune ◽  
Abdelmoumon Gougui ◽  
...  

Abstract To predict the I-V characteristics of the photovoltaic module, five parameters photovoltaic model Abstract: To predict the I-V characteristics of the photovoltaic module, five parameters photovoltaic model was utilized. The most influential parameters in the photovoltaic module are the solar irradiance level (E) and the temperature (T). The present research was conducted due to the high-temperature values in Ouargla city (can reach 60 °C in the hot season), which will affect remarkably the installed PV installations in this region. The experimental was done in several days cause the investigation need a constant irradiance values with different temperature. The temperature of a photovoltaic module varies according to other conditions, the temperature measurements made on the rear face of the PV module may not be indicative due to a temperature gradient in the material of the rear face of the module. Unfortunately, photovoltaic systems manufacturers do not take into consideration these environmental circumstances which negatively influence the module parameters and yielded deterioration in the system efficiency. The aim of this paper is to investigate the effect of the temperature term on the electrical performances such as the open circuit voltage (Voc), short circuit current (Isc), optimal power (Pm) and Fill Factor. The temperature distribution is non-uniform temperature on the surface of PV modules joined to that of the quality of temperature measurements affects the values of temperature coefficients found. To validate a model allows the researcher to get approximately the I-V characteristic similar to the experiment values. It use the conventional technique (Newton Raphson method) and it was compared by an artificial intelligent method which is the PSO technique, the five parameters estimated (Iph, Is, Rs, Rp, n). This proposed approach can be utilized to model any marketable PV module based on given datasheet parameters only. Statistical indicators were adopted to evaluate the performance of the proposed models; where the relative error of the PSO method comes more less the conventional method.


2016 ◽  
Vol 6 (1) ◽  
pp. 9 ◽  
Author(s):  
Naznin Nahar Nipu ◽  
Avijit Saha ◽  
Md. Fayyaz Khan

A Solar panel is rated such that it can yield optimum output under Standard Testing Conditions (STC). But due to different environmental factors the efficiency of the panel is reduced gradually after installation. Accumulation of dust on solar PV panel is one such natural phenomenon. When dust accumulates on the PV panel, the temperature of the cells increases which subsequently decreases the open circuit voltage. The short circuit current is also reduced as deposition of dust causes shading on the panel surface. As a result, the output power of the module decreases. In this paper, the effect of dust on the performance of the photovoltaic module has been studied. The increase in temperature due to dust accumulation has been visualized through the thermal camera and the reduction in power has been analyzed through PSpice simulation and experimental data for the different amount of dust accumulated.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Pankaj Yadav ◽  
Brijesh Tripathi ◽  
Manoj Kumar

Piecewise linear parabolic trough collector (PLPTC) is designed and developed to concentrate solar radiation on monocrystalline silicon based photovoltaic module. A theoretical model is used to perform electrical energy and exergy analysis of low-concentration photovoltaic (LCPV) system working under actual test conditions (ATC). The exergy efficiency of LCPV system is in the range from 5.1% to 4.82% with increasing rate of input exergy rate from 30.81 W to 96.12 W, when concentration ratio changes from 1.85 to 5.17 Sun. Short-circuit current shows increasing trend with increasing input exergy rate of≈0.011 A/W. Power conversion efficiency decreases from 7.07 to 5.66%, and open-circuit voltage decreases from 9.86 to 8.24 V with temperature coefficient of voltage≈-0.021 V/K under ATC. The results confirm that the commercially available silicon solar PV module performs satisfactorily under low concentration.


2018 ◽  
Vol 7 (3) ◽  
pp. 425-432
Author(s):  
M. N. Abdullah ◽  
M. Z. Hussin ◽  
S. A. Jumaat ◽  
N. H. Radzi ◽  
Lilik J. Awalin

Mathematical Modelling of photovoltaic (PV) modules is important for simulation and performance analysis of PV system. Therefore, an accurate parameters estimation is necessary. Single-diode and two-diode model are widely used to model the PV system. However, it required to determine several parameters such as series and shunt resistances that not provided in datasheet.  The main goal of PV modelling technique is to obtain the accurate parameters to ensure the I-V characteristic is closed to the manufacturer datasheet. Previously, the maximum power error of calculated and datasheet value are considered as objective to be minimized for both models. This paper proposes the PV parameter estimation model based minimizing the total error of open circuit voltage (VOC), short circuit current (ISC) and maximum power (PMAX) where all these parameters are provided by the manufacturer. The performance of single-diode and two-diode models are tested on different type of PV modules using MATLAB. It found that the two-diode model obtained accurate parameters with smaller error compared to single-diode model. However, the simulation time is slightly higher than single-diode model due extra calculation required.


Author(s):  
Adnan Hussein Ali ◽  
Hassan Salman Hamad ◽  
Ali Abdulwahhab Abdulrazzaq

<p>Photovoltaic (PV) systems are normally modeled by employing accurate equations dealing with a behavior the PV system. This model has Characteristic of PV array cells, which are influenced by both irradiation and temperature variations. Grid-connected PV system is considered as electricity generated solar cell system which is connected to the grid utilities. This paper characterizes an exhibiting and simulating of PV system that executed with MATLAB /Simulink. The impact of solar irradiances as well as ambient temperature performances of PV models is investigated and noted that a lower temperature provides maximum power higher so that the open circuit voltage is larger. Furthermore, if the temperature is low, then a considerably short circuit current is low too.</p>


Inventions ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 45 ◽  
Author(s):  
Waleed I. Hameed ◽  
Baha A. Sawadi ◽  
Safa J. Al-Kamil ◽  
Mohammed S. Al-Radhi ◽  
Yasir I. A. Al-Yasir ◽  
...  

Prediction of solar irradiance plays an essential role in many energy systems. The objective of this paper is to present a low-cost solar irradiance meter based on artificial neural networks (ANN). A photovoltaic (PV) mathematical model of 50 watts and 36 cells was used to extract the short-circuit current and the open-circuit voltage of the PV module. The obtained data was used to train the ANN to predict solar irradiance for horizontal surfaces. The strategy was to measure the open-circuit voltage and the short-circuit current of the PV module and then feed it to the ANN as inputs to get the irradiance. The experimental and simulation results showed that the proposed method could be utilized to achieve the value of solar irradiance with acceptable approximation. As a result, this method presents a low-cost instrument that can be used instead of an expensive pyranometer.


Author(s):  
Mohammed Bouzidi ◽  
Abdelkader Harrouz ◽  
Tadj Mohammed ◽  
Smail Mansouri

<p>The inverter is the principal part of the photovoltaic (PV) systems that assures the direct current/alternating current (DC/AC) conversion (PV array is connected directly to an inverter that converts the DC energy produced by the PV array into AC energy that is directly connected to the electric utility). In this paper, we present a simple method for detecting faults that occurred during the operation of the inverter. These types of faults or faults affect the efficiency and cost-effectiveness of the photovoltaic system, especially the inverter, which is the main component responsible for the conversion. Hence, we have shown first the faults obtained in the case of the short circuit. Second, the open circuit failure is studied. The results demonstrate the efficacy of the proposed method. Good monitoring and detection of faults in the inverter can increase the system's reliability and decrease the undesirable faults that appeared in the PV system. The system behavior is tested under variable parameters and conditions using MATLAB/Simulink.</p>


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4389
Author(s):  
Juhee Jang ◽  
Kyungsoo Lee

Bifacial photovoltaic (PV) modules can take advantage of rear-surface irradiance, enabling them to produce more energy compared with monofacial PV modules. However, the performance of bifacial PV modules depends on the irradiance at the rear side, which is strongly affected by the installation setup and environmental conditions. In this study, we experiment with a bifacial PV module and a bifacial PV system by varying the size of the reflective material, vertical installation, temperature mismatch, and concentration of particulate matter (PM), using three testbeds. From our analyses, we found that the specific yield increased by 1.6% when the reflective material size doubled. When the PV module was installed vertically, the reduction of power due to the shadow effect occurred, and thus the maximum current was 14.3% lower than the short-circuit current. We also observed a maximum average surface temperature mismatch of 2.19 °C depending on the position of the modules when they were composed in a row. Finally, in clear sky conditions, when the concentration of PM 10 changed by 100 µg/m3, the bifacial gain increased by 4%. In overcast conditions, when the concentration of PM 10 changed by 100 µg/m3, the bifacial gain decreased by 0.9%.


2020 ◽  
Vol 10 (16) ◽  
pp. 5647
Author(s):  
Muhammad Aleem Zahid ◽  
Shahzada Qamar Hussain ◽  
Young Hyun Cho ◽  
Junsin Yi

Calcium fluoride (CaF2) is deposited via vacuum thermal evaporation on borosilicate glass to produce an anti-reflection coating for use in solar modules. Macleod’s essential simulation is used to optimize the thickness of the CaF2 coating on the glass. Experimentally, a 120 ± 4 nm-thin CaF2 film on glass shows an average increase of ~4% in transmittance and a decrease of ~3.2% in reflectance, respectively, when compared to that of uncoated glass (Un CG), within the wavelength spectrum of approximately 350 to 1100 nm. The electrical PV performance of CaF2-coated glass (CaF2-CG) was analyzed for conventional and lightweight photovoltaic module applications. An improvement in the short-circuit current (Jsc) from 38.13 to 39.07 mA/cm2 and an increase of 2.40% in the efficiency (η) was obtained when CaF2-CG glass was used instead of Un CG in a conventional module. Furthermore, Jsc enhancement from 35.63 to 36.44 mA/cm2 and η improvement of 2.32% was observed when a very thin CaF2-CG was placed between the polymethyl methacrylate (PMMA) and solar cell in a lightweight module.


Sign in / Sign up

Export Citation Format

Share Document