scholarly journals Expanded range of testing of soil-steel bridge with use moving loads

Author(s):  
Czesław Machelski ◽  
◽  
Piotr Tomala

n this paper the results of the live load tests of soil steel bridge are presented. The structure was designed with use of the largest possible corrugation type UltraCor. Parameters of analysed structure were referred to the current record structures in the term of span. Standard test procedure have been expended to check the efficiency of the position-changing loads i.e live loads but in a quasi-static approach. The measuring base was the upper part of the shell periphery equipped with inductive and dial gauges to determine deflections at regular layout. Paper presents another example of the formation of “hysteresis loop” where the live load is passing back and forth along the same path. In the case of a dense layout of measuring points it is possible to use a differential algorithm to estimate the bending moments in corrugated steel plates. Analysed case shows that the internal forces and displacements due to the live loads are much smaller than during construction. The purpose of the paper is to indicate the specific behaviour of soil-steel structures in relation to classical arch bridges.

2016 ◽  
Vol 38 (4) ◽  
pp. 25-32 ◽  
Author(s):  
Czesław Machelski ◽  
Marcin Mumot

Abstract Corrugated steel plates are highly rigid and as the constructions can be immersed in soil, they can be used as soil-steel structures. With an increase of cover depth, the effectiveness of operating loads decreases. A substantial reduction of the impacts of vehicles takes place as a road or rail surface with its substructure is crucial. The scope of load’s impact greatly exceeds the span L of a shell. This article presents the analysis of deformations of the upper part of a shell caused by a live load. One of the assumptions used in calculations performed in Plaxis software was the circle-shaped shell and the circumferential segment of the building structure in the 2D model. The influence lines of the components of vertical and horizontal displacements of points located at the highest place on the shell were used as a basis of analysis. These results are helpful in assessing the results of measurements carried out for the railway structure during the passage of two locomotives along the track. This type of load is characterized by a steady pressure onto wheels with a regular wheel base. The results of measurements confirmed the regularity of displacement changes during the passage of this load.


Author(s):  
Karl E. Barth ◽  
Gregory K. Michaelson ◽  
Adam D. Roh ◽  
Robert M. Tennant

This paper is focused on the field performance of a modular press-brake-formed tub girder (PBFTG) system in short span bridge applications. The scope of this project to conduct a live load field test on West Virginia State Project no. S322-37-3.29 00, a bridge utilizing PBFTGs located near Ranger, West Virginia. The modular PBFTG is a shallow trapezoidal box girder cold-formed using press-brakes from standard mill plate widths and thicknesses. A technical working group within the Steel Market Development Institute’s Short Span Steel Bridge Alliance, led by the current authors, was charged with the development of this concept. Research of PBFTGs has included analyzing the flexural bending capacity using experimental testing and analytical methods. This paper presents the experimental testing procedures and performance of a composite PBFTG bridge.


Author(s):  
Philipp Andreazza ◽  
Andreas Gericke ◽  
Knuth-Michael Henkel

AbstractArc brazing with low-melting copper-based filler materials, which has long been established and standardized in the thin sheet sector, offers numerous advantages in the processing of predominantly electrolytically galvanized steel structures. In steel and shipbuilding, on the other hand, equipment parts made of thick steel sheets are hot-dip galvanized at low cost and with good corrosion-inhibiting properties. Quality welding of such constructions is not possible without special precautions such as removing the zinc layer and subsequent recoating. With regard to greater plate thicknesses, arc brazing was analyzed in these investigations as an alternative joining method with regard to its suitability for practical use. Within the scope of the investigations, CuSi3Mn, CuMn12Ni2, and four different aluminum bronzes were examined on different sheet surface conditions with regard to the geometrical and production parameters. This was carried out by build-up and connection brazing, executed as butt and cross joints. Quasi-static tensile tests and fatigue tests were used to assess the strength behavior. In addition, metallographic analyses are carried out as well as hardness tests. The suitability for multi-layer brazing and the tendency to distortion were also investigated, as well as the behavior of arc brazed joints under corrosive conditions.


2018 ◽  
Vol 763 ◽  
pp. 295-300 ◽  
Author(s):  
Khaled Saif ◽  
Chin Long Lee ◽  
Trevor Yeow ◽  
Gregory A. MacRae

Nonlinear time history analyses of SDOF bridge columns with elasto-plastic flexural behaviour which are subject to eccentric gravity loading are conducted to quantify the effect of ratchetting. Peak and residual displacements were used as indicators of the degree of ratchetting. The effects of member axial loads and design force reduction factors were also investigated. It was shown that displacement demands increased with increasing eccentric moment. For eccentric moment of 30% of the yield moment, the average maximum and residual displacements increase by 4.2 and 3.8 times the maximum displacement, respectively, which the engineers calculate using static methods without considering ratchetting effect. Design curves for estimating the displacement demands for different eccentric moments are also developed. The current NZ1170.5 (2016) provisions were found to be inadequate in estimating the maximum displacement for steel structures, and hence, new provisions for steel structures should be presented.


2021 ◽  
Author(s):  
Takuma Rokutani ◽  
Kazutoshi Nagata ◽  
Takeshi Kitahara

<p>In Japan, many steel structures were constructed during the period of the high economic miracle, and they are now more than 50 years old and are aging. Corrosion has been confirmed at corners and the boundary of concrete-wrapped concrete in steel piers. It was found that corrosion damage at the corner of steel piers causes a decrease of seismic performance in our previous investigations that carried out seismic response analysis. Subsequently, in this study, the effect of corrosion damage at the near ground edge of steel bridge piers with a rectangular cross-section was investigated in detail on the buckling behaviour and seismic performance of structures. As a result, it is found that the buckling at the base causes a decrease in load bearing performance compared to the buckling in the entire panel. It is necessary to properly maintain to prevent buckling at the base caused by corrosion.</p>


2011 ◽  
Vol 2 (2) ◽  
pp. 39-47 ◽  
Author(s):  
Pui Tau Shien ◽  
Seneviratne H.N. ◽  
Dygku Salma Awg Ismail

Fibrous peat is an undrained peat that usually possesses very high moisture content. However, not all experimental procedures are applicable for determination of moisture content of fibrous peat. This research is aimed at examining the determination of insitu moisture content of fibrous peat using field measurements. The peat soil samples were collected at shallow depths from Asajaya at Kota Samarahan and Taman Kopodims at Matang , Kuching Sarawak by using peat auger. The laboratory tests such as determination of moisture content, fiber content, particle density and ash content were conducted on the collected samples in order to establish relationships between the parameters. Undisturbed peat samples from Matang were subjected to falling head permeability test to determine the saturated permeability. The saturated sample were then allowed to drain freely to simulate the moisture loss possible during sampling when samples were brought out of boreholes. The test results showed that moisture content varies according to the drying temperature and position of the soil sample (top, middle and bottom) during sampling. Comparing samples from both locations, peat soil from Kota Samarahan possessed higher moisture content. The saturated permeability of peat sample was in the range of 2.62 – 3.05 cm/s. The free draining trial showed that moisture loss during sampling significantly influence the moisture content measurement. The variation in value of moisture content for fibrous peat may occurs due to several factors such as existing ground water table, sampling method by boring, existing standard test procedure which is not suitable for peat soils requirement and also because of the physical properties which varied according to depth of soil.


2013 ◽  
Vol 12 (2) ◽  
pp. 213-220
Author(s):  
Marian Giżejowski ◽  
Zbigniew Stachura

Issues related to safety requirements for steel elements subjected to different stress resultants in reference to limit states design philosophy according to Structural Eurocodes PN-EN and national codes PN-B are dealt with in the paper. The calibration of partial cross-section resistance factors is discussed on the basis of elements of steel floor structures where the permanent load component and the live load component of variable actions are the only components of load combinations. Final conclusions for their practical application in the codification process are formulated and values of partial factors for cross section resistance are proposed.


Author(s):  
A. A. Pridein ◽  
L. V. Prokopenko ◽  
O. V. Samokhina ◽  
S. P. Zubov ◽  
D. A. Shablya ◽  
...  

Within the national project “Safe and quality automobile roads” realization a big number of bridge passages will be constructed, including steel road bridges with small (14–42 m) spans instead of reinforced concrete bridges. Application of metal rolled products of 10ХСНД, 15ХСНД, 10ХСНДА, 15ХСНДА steels in the steel structures of bridges with small spans results in unreasonable increase the costs of the bridges structures. This circumstance stipulates necessity to elaboration and implementation of cheap lean alloy steel for manufacturing standard short-spanned bridges. The steel production should involve minimal and lean alloying method and ensure complex of operation properties in normalized state. At JSC “Ural Steel” an experiment work was accomplished for elaboration lean alloy steel 12Г2СБД due to STO 13657842-1 having standard yield strength 345 MPa. In cooperation with NIZ “Mosty”, OJSC “CNIIS” and CNIIchermet after I.P. Bardin technical specifications of plates for short-spanned bridges were elaborated and approved. Comprehensive technology of 12Г2СБД steel plate production was elaborated. A trial batch of 12Г2СБД steel plates was produced and shipped to ZAO “Kurganstalmost”. Study of welding and technological characteristics of the trial batch plates was carried out. The study showed, that the plates of 12Г2СБД steel have low sensitiveness against heat action of a welding thermal cycle and can be used in welding structures of steel bridge spans providing keeping the plant and assembling welding technology by standard regimes (due to welding technology of steel 10–15ХСНД). Application of the plant and assembling technology at welding by standard regimes makes it possible to use the plates of the elaborated steel for manufacturing metal structures of short-spanned metal bridges for various weather conditions. The plated can be used for both a regular performance (the calculated minimum temperature is down to –40 °С inclusive) and a northern performance Zone A (the calculated minimum temperature is down to –50 °С inclusive).


2019 ◽  
Vol 41 (2) ◽  
pp. 67-73
Author(s):  
Czesław Machelski

AbstractA characteristic feature of soil-steel structures is that, unlike in typical bridges, the backfill and the carriageway pavement with its foundation play a major role in bearing loads. In the soil-steel structure model, one can distinguish two structural subsystems: the shell made of corrugated plates and the backfill with the pavement layers. The interactions between the subsystems are modelled as interfacial interactions, that is, forces normal and tangent to the surface of the shell. This is a static condition of the consistency of mutual interactions between the surrounding earth and the shell, considering that slip can arise at the interface between the subsystems. This paper presents an algorithm for determining the internal forces in the shell on the basis of the unit strains in the corrugated plates, and subsequently, the interfacial interactions. The effects of loads arising during the construction of a soil-steel bridge when, for example, construction machines drive over the structure, are taken into account in the analysis of the internal forces in the shell and in the surrounding earth. During construction, the forces in the shell are usually many times greater than the ones generated by service loads. Thus, the analytical results presented in this paper provide the basis for predicting the behaviour of the soil medium under operational loads.


Sign in / Sign up

Export Citation Format

Share Document